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Towards Deep Learning Driven Design Pattern Detection
Detecting Design Patterns by Convolving Object Oriented Properties

Hannes Thaller

Abstract

Design patterns are elegant and well tested solutions to recurrent software development
problems. Their extensive use in every day programming weaves valuable architectural
information into software systems. Despite the wide usage of design patterns, system
documentations seldom contain information about their existence. This work presents a fully
fledged approach to extract design patterns such that the lost information can be of value
for architects, developers and maintainers. It includes the common design pattern detection
steps that extract features, sample candidates from the system under inspection and infer
whether the candidates are of a certain pattern or not. The approach incorporates the usage
of object oriented properties in form of micro-structures that are projected onto feature
maps. These feature maps are then analyzed by a convolutional neural network that extracts
high-level features from which robust prediction results can be drawn. Results indicate that
deep learning methods bare great potential for the design pattern community as reliable

inference procedure.
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Kurzfassung

Entwurfsmuster sind elegante und vielfach erprobte Lésungen fiir wiederkehrende Soft-
wareentwicklungsprobleme. Thr haufiger Gebrauch in der téglichen Programmierung bettet
wertvolle Informationen beziiglich der Applikationsarchitektur in den Sourcecode. Trotz der
breiten Nutzung von Entwurfsmustern ist ihre Existenz und Implementierung nur selten
dokumentiert. Diese Diplomarbeit stellt einen vollwertigen Ansatz zur extrahierung von
Entwurfsmuster vor, sodass Architekten, Entwickler und Maintainer von den eingebetteten
Informationen profitieren kénnen. Es werden Losungen fiir die typischen Phasen der Entwurf-
smustererkunnung vorgestellt wie das extrahieren von Features, das finden von potentiellen
Entwurfsmusterinstanzen und der Prozess zur Entwurfsmusterklassifizierung. Der présentierte
Ansatz verwendet typische Eigenschaften der objektorientierten Programming in Form von
micro-structures welche auf feature maps projeziert werden. Diese werden dann mittels eines
Convolutional Neural Networks analysiert sodass eine robuste Klassifizierung erfolgen kann.
Die Ergebnisse zeigen das Deep Learning ein grofie Potenzial fiir die Entwurfsmustererkennung

hat und sich somit als zuverlédssige Klassifizierungsmethod eignet.
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1. Introduction

Design patterns (DPs) are elegant and well tested solutions to recurrent software development
problems. Design Patterns — Elements of Reusable Object Oriented Software, written by
Gamma et. al [15], is the most well known collection of patterns and inspiration for many
follow ups. They are the result of software developers dealing with problems that occur
frequently, solving them in the same or a slightly adapted way. Design Patterns are the
generalized version of the different adapted implementations such that they can be reused
and applied over and over again in different situations. Patterns have a name that identify
them and help during the communication needed in the development process. Usually they
solve some higher level Object Oriented (OO) architectural problem dealing with creation,
structure or behavior of a small set of classes or objects. Some of the problems are related
to deficiencies in OO languages and thus only occur on certain technologies, but most solve
the problem of inflexible design during development of non trivial software systems. The
solution that the pattern provides is described in an abstract fashion such that it can act
like a template solution in many different situations. Class arrangements are defined rather
loosely with a detailed description and examples of implementations to reduce the learning
curve and to provide aid during the actual realization. Despite their obvious advantage of
solving and providing a well known and applied architectural solution to recurrent problems,
design patterns also impair consequences related to their specific solution that need to be
considered. These trade-offs are usually associated with space or time demands in exchange
for more flexibility in the design, such that the evolution of the system can be done more
fluently. Additionally certain patterns add a rather high entrance level for junior developers,
nonetheless because of their good documentation, unfamiliar developers may easily study

them during their development activities.

Pattern descriptions are very detailed and contain their name, intent, motivation, where
they are applicable, structures, participants, collaborations, and so forth. The patterns
semantic is given by the intent, motivation and applicability, which describes what the
pattern does, why the pattern is needed, and where it is useful. Participants reflect the
template nature of patterns as they are roles that classes can adopt and, structure and
collaborations describes how these roles interact. A well of information is encoded in design
patterns and their descriptions, and developers weave this information into their system
during the implementation activities. The usage of a pattern is related to some specific
design decision during development and often these decisions and their rationals are not
documented throughout the process. Also the usage of a pattern is usually not documented,
thus decision, rational and their materialization in form of the pattern’s implementation are

lost in the system’s source code. Retrieving this encoded information such that development,
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redevelopment and maintenance can profit from it is the main motivation of Design Pattern
Detection (DPD).

Software engineers can profit from DPD by analyzing existing similar projects by looking
for performance bottlenecks, evolutionary dead ends and frequently extended modules such
that they can make an informed decision during their development activities. They may learn
from past architectural failures or successes enabling them to sharpen their skills and tailor
their decisions for new systems. In running systems pattern information helps the evolution
of submodules by reusing existing structures and by controlled and complementary extensions
to the architecture. In addition to the analysis aspects, DPD might enable several automation
technologies once it reaches a mature state. For instance automatic test generation for
pattern participants and their collaboration would yield more robust software systems as a
set of well known and through thought test suits could be generated for each situation. By
defining smaller and more general patterns, DPD could enhance static and dynamic code
analysis by providing guidelines and heuristics to the developers during programming directly
into their Integrated Development Environment (IDE). These heuristics could point out
possible failures, bad practices and how to resolve them. Additionally, extending DPD to the
domain of software models would enable the software engineers to avoid typical architectural
missteps and to simulate the subsystems behavior and performance based on empirical data
retrieved by previously analyzed systems. The ultimate goal of DPD is to define and detect a
well defined catalog of micro-architectures on which analysis and automation tasks can be

executed.

1.1. Basics Notions of Design Pattern Detection

A design pattern is a set of roles (participants) to which classes are mapped, that communicate
(structure and collaboration) in an organized fashion with respect to the pattern, and that
have some specific semantics (intent, motivation and applicability) attached to them. Design
pattern detection reconstructs the original mappings between classes and roles with respect to
their communication such that the attached semantics provide information about the system
under inspection. Figure 1.1 (based on an example in [15]) illustrates this process in which the
input is a set of classes and the output are the annotated version of them. The classes within
the example represents a subsystem of a text processor that handles line breaks within a text.
Composition contains a Compositor that is responsible for handling the line breaks. Different
implementations are given by the subclasses of Compositor, and the Composition uses one
of them on demand. The subsystem is an instance of the Strategy pattern where the left
side in Figure 1.1 represents the initial state before, and the right side the annotated version
after the detection process. Mapping 1 for instance contains the atomic mapping Context
+ Composition, Strategy < Compositor and ConcreteStrategy <+ ArrayCompositor, hence
each role mapping assigns at least one class to one role resulting into multiple role mappings
for the same subsystem (situation). Mapping 1 to 3 differ only by one role which is a common
scheme in design patterns. Primary roles define the communication scheme within the pattern
and drive the communication through the patterns class structure. Secondary roles provide

the implementation for the abstractions and inherit the protocol from the primary roles,

10
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thus are commonly fluctuating in their class assignment. A system usually provides multiple
versions of the secondary but only a handful of different implementations for the primary
roles. All mappings that share the same primary role belong to the same unique role mapping
representing one specific implementation of a pattern within a sub-system. More formally, a

mapping is a k-fold relation between a set of classes C' and a set of roles R with
mpr = {(a,b) € C* x R* : a complies with b}, (1.1)

in which P* is a specific pattern with % roles. Each unique role mapping reflects an equivalence
class in which the primary roles are compared. Given a set of mappings Mpr with the
equivalence relation ~pr: Myr X My in which the classes mapped to the primary roles are
compared, then

(M)~ = {x € Mpr : x ~pr m} (1.2)

represents the P* equivalence class from m. That is, all role mappings of pattern P with
k roles that have the same primary roles as mapping m. Figure 1.1 illustrates an example
where Composition and Compositor are mapped to Context and Strategy representing the
primary roles. Array, Simple and Tex-Compositor are mapped to the secondary role each

representing Mapping 1-3 that all belong to the Unique Mapping 1.

The question mark in Figure 1.1 represents the algorithm that makes the inference step
and decides whether a proposed role mapping is a valid instance of a predefined pattern.
The inference method takes in the simplest case k classes and returns a boolean decision
whether they are valid or not with respect to the pattern P. One of the classical problems
of DPD is the amount of candidate mappings that need to be processed by the inference
method. A candidate mapping is a set of classes that are tentatively assigned to a set
of roles and tested by the inference method. The amount of classes combined with the
amount of rBuilding a system that takes plain source code and returns a list of grouped
classes that make up a certain pattern needs several steps to function. Not only is source
code a rather complex domain, but also the multivariate output, in form of role mappings,
adds to the complexity of the problem. That is, not only one artifact needs to be classified
(e.g., ClassA is an abstraction), but a group of classes where each class on its own and the
relationships between them need to be considered. Additionally the system needs to cope
with the combinatorial explosion caused by the number of classes in the system and number
of participating classes in a pattern instance.oles that need to be tested in a non-trivial
system results in a intractable big search space, hence high potential candidate mappings
need to be sampled from the system. Sampling ideally collects all true mappings along with
little to no false mappings such that a minimal set of candidates needs to be processed by
the inference method. Given a set of potential candidates, features need to be extracted
that capture the crucial information stored in the classes. The extraction can be done either
directly from the text source or from an intermediate representation like the Abstract Syntax
Tree (AST) or Abstract Semantic Graph (ASG). Features range from simple class metrics
(e.g., number of functions) to OO relationships (e.g., aggregation) up to predefined subtrees

of the ASG called Micro-Structures (MS) (e.g., delegation). Features are then optionally

11
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Unique Mapping 1

Mapping 1

- 5

’ Strategy \

Mapping 2

Mapping 3

Figure 1.1.: The goal is to find a process that can reconstruct the original role mappings of
a given pattern. Inputs are classes of a system, outputs are mappings between
pattern roles and the input classes. A unique mapping defines a set of mappings
that share the same communication scheme, e.g., Composition and Compositor
are the primary roles and define the communication scheme, xCompositor the
implementation of the service.

normalized such that they can be processed via the inference method. The features and their
normalization mitigate the problem associated with graph based algorithms that are usually
computationally intensive up to the point where they become infeasible. After the extraction,
sampling and normalization comes the inference step done by a method that can cope with
uncertainties, where the uncertainties are caused by implementation details that differ from

pattern instance to pattern instance.

1.1.1. Research Question

This work focuses on Convolutional Neural Networks (CNNs) to make the inference, in which
subtrees of the ASG are represented by a compressed version of their adjacency matrix. Given

the basic notions the concretized research questions are:

1. Are design patterns detectable via modern machine learning methods, i.e., Convolutional
Neural Networks?

a) Are micro-structures appropriate features for the design pattern detection task?

12



CHAPTER 1. INTRODUCTION 1.2. SYSTEM OVERVIEW

b) How can the amount of candidate mappings within a system be reduced to

manageable size?

¢) How can role-mappings be efficiently represented such that CNNs can learn from
them?

Essentially this work is concerned with building a design pattern detection tool using a
modern machine learning approach in the inference step. It does this by providing a system
in its entirety, i.e., a system that takes classes as input and provides role mappings of certain
patterns as output (see Section 1.2). The preexisting micro-architectures (micro-structures)
are revised and reformulated in a formal and unambiguous way to support further research
in the area of DPD (see Chapter 2). Also an approach to reduce the amount of candidates
is given, which is a crucial step in making the entire pipeline feasible in the first place
(see Chapter 3). This thesis discusses multiple ways to normalize micro-structures (sub-
graphs) into a fixed homogeneous form such that it can be used with most machine learning
approaches that rely on fixed sized data structures (see Chapter 4). Furthermore it provides
two additional normalization strategies and discusses their differences and applicabilities. At
last, training and architecture of the CNNs are provided along with their results and possible
implications for 6 design patterns (see Chapter 5). The conclusion elaborates the results of

the system and discusses the system in its entirety (see Chapter 6).

1.2. System Overview

Building a system that takes plain source code and returns a list of grouped classes that make
up a certain pattern needs several steps to function. Not only is source code a rather complex
domain, but also the multivariate output, in form of role mappings, adds to the complexity
of the problem. That is, not only one artifact needs to be classified (e.g., ClassA is an
abstraction), but a group of classes where each class on its own and the relationships between
them need to be considered. Additionally the system needs to cope with the combinatorial
explosion caused by the number of classes in the system and number of participating classes in
a pattern instance. To cope with all the these issues, design pattern detection systems usually
have multiple phases each handling one issue at a time. Phase 1 optionally transforms the
source code of the system into a different representation (AST, ASG, ...). After that, phase
2 extracts features that abstract the system into a set of characteristics. These characteristics
are the digest of the classes and their relationship and help to pre-filter the huge search space
for candidate mappings in phase 3. In phase 4, the candidate mappings are classified whether
they are an instance of a certain pattern or not. Specifically steps 2, 3, 4 are very common
design decisions and reflect the main problems of DPD. Example systems that have this
general structure are presented by Alhusain et al. [1], Antoniol et al. [4], Uchiyama et al.
[52], Zanoni et al. [57] and De Lucia et al. [31]. Note that this list may not be complete but
is rather a glimpse onto multiphase detection systems.

The system presented in this work is build up similar to other multiphase detection systems.
Figure 1.2 illustrates the basic components and their outputs where rounded rectangles are

processes and edged rectangles are artifacts. The question mark within Figure 1.1 represents

13
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Source Code Feature Candidate
Extraction Sampling
Feature Design Pattern Boolean
Normalization Detection Decision

Figure 1.2.: Overview of the detection pipeline. Rectangles are processes; ellipses are artifacts.
First class features are extracted from the source code then, based on the features,
are candidate role mappings sampled. Features of the sampled role mappings
are normalized into feature maps and ultimately used as input for the detection
process that provides a decision, whether a given candidate mapping is of a
certain pattern.

these processes an each step helps to produce the annotations on the right side. Input is the
systems source code (Java) and output are the candidate mappings with their decision. In
fact the attached decisions are probabilities or the degree of belief the system thinks that
the presented candidate mapping is an instance of a certain pattern or not. All steps in
between either transform or filter the input and are discussed in detail in their respective
chapters. The only process different from the typical multiphase architecture is the feature
normalization that transforms the features of the candidate mapping into a fixed sized
matrix such that it can be handled by most machine learning models. Each design pattern
parameterizes the pipeline that extracts, samples and detects the pattern according to its
peculiarities. Obviously this is needed as each pattern has different communication schemes

and participants that do not allow for one general pipeline.

The system detects 6 different design patterns: Adapter, Composite, Decorator, Factory
Method, Singleton and Template Method. These were subjects in many research scenarios
throughout the DPD community [1, 4, 19, 31, 51, 57] hence offer a way to produce somewhat
comparable results. Furthermore the selected patterns are very popular and broadly used
in projects such that they have a high relevance in the context of software engineering.
Additionally there exists a benchmark platform for design pattern detection [6] on which
results from DPD tools are evaluated. This happens on a semi-automatic basis where platform
users can vote on the found results. The benchmark was not used throughout this work
because of time limitations. The peer reviewed instances to build this tool came from the
Pattern-like Micro-Architecture Repository (P-MARt 04/10/19) [56] where 8 of the 9 projects

were used (see Chapter 5 for details).

1.2.1. Detected Design Patterns

Despite the fact that there exist 23 classical design patterns only 6 are evaluated, two from
each DP category: Singleton and Factory Method from Creational Patterns, Composite and
Decorator from Structural Patterns, and Strategy and Template Method from Behavioral

Patterns.

14
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Adapter

Adapter is a pattern often used in the context of legacy code or frameworks. It is useful to
bridge the legacy interfaces to new modules via an adapter allowing the new modules to
be defined in a clean way. Frameworks use adapters to offer an entrance point for external
components that are implemented by the framework users. An example for this would be
the Eclipse Project that uses this concept extensively to allow loosely coupled but dynamic
plug-ins for the entire Eclipse ecosystem [54]. Figure 1.3 shows the patterns structure in which
the client code calls the interface defined by Target. Adapter provides an implementation
for Target’s interface, adapts the message and redirects it to Adaptee. In the context of
DPD, Client roles offer little to no additional information as some code must call the pattern
anyway or the entire implementation would be superfluous. Hence clients are not considered
a valid role during the detection itself despite their usefulness in general, as they point out
the start of the patterns communication sequence. This has little to now influence on the
software engineer that uses the detection tool as the Client is rather inconsistently part of a

pattern or not within [15].

Figure 1.3.: An Adapter converts the interface from the Adaptee to a Target such that Clients
can interact with them.

Composite

Figure 1.4 illustrates the class structure of the Composite pattern, which is useful to build
hierarchies and interact with them in a uniform way. Client calls an operation on Components
which is forwarded by Composites in the hierarchy to Leafs that implement the actual
behavior. New Leafs and Composites can be added dynamically such that the hierarchy
structure is flexible and adaptable during runtime. Again, Client is ignored in the context of
DPD resulting in a total of 3 roles. The Composite pattern is often used in drawing tools
and Graphical User Interface (GUI) frameworks like Swing [37] for the Java platform. In
Swing, all Ul components comply to the Component interface and offer a draw method that
is either implemented with a specific drawing algorithm for the component, or delegates the

call if the current component is a container.

Decorator

Decorators allow to dynamically attach new responsibilities to existing objects thus may be

used as flexible alternative to inheritance. Sometimes inheritance hierarchies force developers

15
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children

Figure 1.4.: Composite offers a way to build up dynamic hierarchies where the elements can be
used uniformly through a shared interface. Component offers this shared interface
and Composite and Leaf implement the hierarchy classes. Each hierarchy class
contains the Operation method that execute the designated algorithm on the
hierarchy parts.

to enumerate many possible combinations of subclasses along with their responsibilities in
order to cover all use-cases. This becomes very quickly unpractical and unfeasible from a
maintenance perspective. Decorators circumvent this limitation by using object composition
in which Decorator delegates the original call, made to the shared Component interface, to
Concrete Component and add new states and responsibilities along the way. The InputStream
and OutputStream classes from the Java IO package are a very prominent instance of the
Decorator pattern. InputStream represents the Component and Concrete Component role,
and may be extended by decorators that specialize the stream to certain sources, e.g., audio,
bytes, files, objects, string and so forth. These decorators are then applied in a nested
fashion such that the original InputStream may become a ByteArrayInputStream and then
a AudiolnputStream such that it may function as a stream for audio signals. The basic
structure is given in Figure 1.5 which contains two distinct Concrete Decorator representing

the ByteArrayInputStream and AudiolnputStream from the previous example.

Factory Method

A broadly used pattern to create objects is the Factory Method pattern. The Creator defines
interfaces to create Products that are implemented by the sub-classing Concrete Creator.
This is useful if the Concrete Products stand in a relationship with its creators. A typical
use-case for this pattern is if a class hierarchy represents the elements within a system and a
second class hierarchy the handlers that work with them. The base class of the elements may
now define a factory method that all the subclasses implement such that each element has a
chance to return a handler specialized for its needs. This is reflected by Figure 1.6 in which

the Creator is the element that creates the handlers.

Template Method

The Template Method pattern enables an algorithm and its steps to be dynamic by providing

a skeleton of the algorithm which is completed by its subclasses. This allows a framework to
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component

Figure 1.5.: Decorators allow to dynamically attach new responsibilities to existing objects.
Concrete Components are basic classes that are enriched by the Decorators. Both
share the same interface via the Component and each Concrete Decorator offers
a specific additional implementation detail.

=

Figure 1.6.: Factory Method defines an interface to create objects but deferrers the actual
instantiation to the subclasses. Creator defines the factory method which is
implemented by the Concrete Creator.

outline the necessary steps to complete a task by defining an Abstract Class, and relying on
the users to provide the missing steps in terms of a Concrete Class. Figure 1.7 illustrates the
basic structure where the Abstract Class relies on the subclass implementation within the
TemplateMethod() method.
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Figure 1.7.: Template Method allows to provide different implementations for certain steps of
an algorithm. These steps are defined and called in the Abstract Class in the order
the algorithm needs them. Concrete Classes only provide the implementation of
the steps and but cannot control their call order.
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2. Feature Extraction

Source code is usually presented in text form along with a specific syntax that allows the
developer to capture the algorithms and structure them in an appropriate way. Thou simpler
than natural language, source code still is a challenging representation for analysis and
automation tasks as modern general purpose languages provide a wide variety of grammar
constructs. Furthermore DPD does not limit itself to the mere syntax of languages, but tries
to reason and interpret the content of the code such that it can make informed decisions.
Feature extraction helps to reduce the complexity of syntax and semantics by abstracting the
source code into high level constructs that can be easier processed. The abstract process is
depicted in Figure 2.1 where the source code (given as ASG) is the input and class features

are the output of the feature extraction.

Feature
Extraction

Source Code —_—

Figure 2.1.: The feature extraction process takes the source code transforms it into an ASG
and extracts the class feature from it. Class features are subtrees within the
ASG, so called micro-structures.

2.1. Related Work

There are numerous ways to represent source code such that models and algorithms are
able to detect patterns in it, and in fact, before explicit features are extracted, the text is
usually transformed into an internal representation. For instance, the source code might be
transformed into an Abstract Syntax Tree (AST) [30], Abstract Semantic Graph (ASG) [12],
Control Flow Graph [2] or into a specific bit representation from which features are extracted
or which directly represent the features. Don et al. [11] reports up to 18 different internal
representations in 23 tools, which is not a complete list of all available tools but emphasizes
the importance of the internal representation and features.

Guéhéneuc et al. [19] uses an AST/ASG to extract object-oriented attributes from classes
like: size (i.e., number of methods, fields...), filiation (i.e., number of parents, childrens),
cohesion (i.e., number of internal class calls), coupling (i.e., number of external calls), which
are then used to compute fingerprints. The rational behind these fingerprints is actually
related to the process of candidate space reduction but Alhusain et al. [1] incorporated the
original metrics along with the results of CKJM [46], Dependency Finder [49] and JMT
[24] to build a set of features. These tools work on the AST or bytecode of a system and

extract mainly unary OO metrics that capture a variety of aspects similar to the metrics for
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fingerprinting. Although containing features that capture information about multiple classes
and their relationships, most features only provide an abstract one-dimensional view onto
these. For instance CKJM measures metrics like Depth of Inheritance Tree (DIT) or Number
of Public Methods (NPM), similar JMT contains the NPEC - Number of Public Extendable
Classes mearsure, which all abstract the original multivariate relationship between classes.

A more exotic approach is given by De Lucia et. al [31] in which the class diagrams of
a system are transformed into a visual language representation that describe the diagram
structure in form of visual sentences. This tool uses the intermediate representation, the
diagram description given in the visual language, directly as feature instead of transforming
it into an AST. In contrast Antoniol et al. [4] transforms the AST one step further into
an Abstract Object Language (AOL) representation to extract language independent OO
metrics similar to the features extracted by Alhusian et. al. Both tools have the ability to
work with multiple platforms as they either abstract the language dependent representation
or directly work with an abstraction of it (diagrams).

In contrast to the previously presented approaches, Uchiyama et al. [52] used the Goal-
Question-Metric (GQM) [53] approach to produce metrics that are closely related to the
design patterns and their roles. Following the scheme of GQM, they defined goals and
questions tightly related to the design pattern and their roles, resulting in metrics that highly
correlated with them. An example would be Number of other classes with field of own type -
NCOF metric which is a detailed description of the aggregation relationships to others classes
and useful in outlining the Adaptee in the Adapter pattern.

Tsanatalis et al. [51] uses similarity scoring on the system’s and pattern’s adjacency
matrices. It uses the fact that the system class diagram and the pattern class diagram
is essential a directed graph that can be perfectly mapped onto square matrices. Each
feature is then represented in its own square matrix capturing relational information between
classes and within classes. Used features are for example association, generalization, method
invocation, but also unary features like abstract class (is the class an abstract class). The
features themselves are in comparison to GQM designed features rather fundamental aspects
of OO programming, however they maintain the entire relationship information. Instead of
providing a single scalar for a relationship (e.g., NCOF ) the matrix itself can relate the two
classes along with the number of fields that connect the two classes. This information is

obviously essential for DPD an mimics how humans detect design patterns in code.

2.1.1. Micro-Architectures

Micro-structures (MSs) are a catalog of very small design patterns that capture characteristic
between a very limited set of roles (usually 1-2 roles). They represent the best of both worlds,
features that maintain actively the relationship information between classes, but also are
tailored and designed for design pattern detection and analysis. They provide means to
describe software on an abstract level beyond simple counting, by building up relationships
between elements and describing them in form of patterns. To most outstanding difference
between MSs and DPs is that MSs can be detected by means of logic (first-order logic).

The entire catalog of Micro-Structures is made up by three sub-catalogs: Elemental Design
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Patterns (EPDs), Design Pattern Clues (DPCs) and Micro-Patterns (MPs). The sub-catalogs
where defined independently, each having their own motivations and goals, but all of them
prove valuable in the process of detecting design patterns as Fontana et al. [5] concluded in
a series of experiments. Not all MSs are important for every DP role but each role has its
own small set of MSs that describe its main aspects. The most complete catalog is given by
Maggioni [34] in which not only all catalogs are unified but also each pattern is defined by
means of logic. The redefinition by means of logic is a crucial step to a unified catalog as not

all sub-catalogs are presented in an unambiguous way.

Elemental Design Patterns (EDPs), defined by Smith [44], capture solutions to common
problems in everyday programming and basic concepts of OO design. In fact the 16 EDPs
structured in 5 categories are so basic that they are used without even noticing them as
pattern. For example the Abstract Interface pattern states that a common interface for
a family of types is defined where the implementation is deferred to the subtypes. The
concept behind the pattern is so natural that it is usually materialized and integrated in
the programming language directly (e.g., in Java: interfaces and abstract classes). A more
sophisticated pattern would be the Redirected Recursion that defines a recursion involving
multiple objects of the same type. From these examples it should be clear that EDPs are
defined to break down complex abstract (sub-)systems into smaller easy recognizable and

fundamental bits of code that allow automatic reasoning and analysis.

In contrast to EDPs that capture also relationships between types, Micro-Patterns (MPs)
limit themselves to recurring implementation practices on a single class. The 27 MPs, defined
by Gil and Maman [17], are structured in 8 categories with the common purpose to define and
name everyday practices (on a class level) such that easy communication is possible, much like
Design Patterns. The patterns were found by searching for so called pre-patterns in a source
code corpus and identifying commonalities that were then restricted in a sensible manner.
The catalog itself is defined in a rather ambiguous way thus slight variations between the
intention of the original authors and the logical definition by Maggioni might exist. Differences
between the definitions might even increase as most of the MPs are defined too restrictive to
be useful in the context of design pattern detection. For example the Implementor pattern is
a concrete class where all methods override inherited abstract methods. Though being useful
in the context of communication, the restriction that all methods must be inherited might be
to strong thus reduces the patterns applicability. Possible changes involve that only public
methods are inherited which allow classes to implement a private behavior providing a more

realistic implementation style.

With the direct intention to find DPs, Maggioni [32] defined 41 Design Pattern Clues
(DPCs) divided in 8 categories. DPCs are possible hints that can be used to find a certain
DP and were constructed by manually analyzing DP implementations. For instance, the
Concrete Product Getter pattern helps to find Creational Patterns, as it defines a class that
declares one or more methods that return objects belonging to some other class. Although
Smith mentions the usefulness of EDP in the context of DPD, design pattern clues are the
only micro-structures that where design exclusively with the purpose of detecting design

patterns, thus their amount and also their semantics differ from the others. DPCs are very
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specific and describe detailed information of classes, for instance the Proxy Method Invoked
is applicable to classes that invoke a referred subject by using the Redirect in Limited Family
EDP. Not only does the DPC make a statement about the caller by referring it as proxy
(which again referrers to a MS) but also makes use of an element design pattern to describe

how the communication should look like.

2.2. Micro-Structures as Features

The approach used within this work extracts micro-structures from an ASG that are than
normalized to a matrix form as described in Chapter 4. Figure 2.2 illustrates the running
Strategy example of the text compositor and extends it by a factory from which the Com-
positor can be retrieved. Again the roles of the Strategy pattern are annotated to the
Composition, Compositor, ArrayCompositor, TeXCompositor and SimpleCompositor class,
but in addition there are also micro-structures roles attached. Obviously the Compositor
functions as Superclass in the Inheritance MS and ArrayCompositor, TeXCompositor and
SimpleCompositor as Subclass. These classes make up a named subgraph related to the
inheritance of this particular subsystem and enables analysis methods to directly interpret
the classes and their relationships. Additionally the Retrieve MS is given which states that a
Sink uses a Retrieved object within its local scope, by retrieving it from a Source. In this case
Compositor is the Sink and retrieves the Composition from the CompositeFactory. Again
the intent of the subgraph is inherently given by the MS, i.e., it is clear how these classes

interact with each other. Extracting named subgraphs has the advantage that the amount

Retrieve

e _

Figure 2.2.: The text processor sub-system handles line breaks within a document. Strategy
pattern roles are attached as given in the original version of the example (Strat-
egy < {Compositor}, ConcreteStrategy < {Array-, Tex-, SimpleCompositor},
Context +— Composition). Additionally Retrieve and Inheritance MS roles are
given and represent a certain proportion of the ASG.
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of subgraphs that need to be processed is effectively reduced to the bare minimum but still
retains most of the crucial information stored within the entire graph. These subgraphs may
(partially) overlap since they describe different aspects of the same elements thus do not
interfere with each other. In fact they even complement themselves and help building complex
semantics by combining multiple MSs where each pattern contributes a piece of information.
For example the combination of Inheritance and Retrieve enables the reasoning that the
Composition uses an object of a different class, to retrieve its aggregate that participates
in a inheritance structure. The basic structure of the Strategy pattern becomes clear if the
example is enriched by a MS related to method invocation (e.g., Template Method) such
that the Composition calls a Template Method on the Compositor. Each additional MS
contribute to the entire semantic of the structure and demonstrates the advantages of using
micro-structures in the analysis process. The obvious disadvantage is that features that
might not appear important from a human perspective, but would work well from a machine

learning point of view, may be excluded because of the "human" biased view onto it.

2.2.1. Technical Overview

Initially the source code, given in form of Java files, is parsed, analyzed and abstracted into
an AST/ASG by the Spoon [38] library, which is an open-source library for Java source
code analysis and transformations. It provides an abstract view onto an AST, much like
an ASG with convenient methods for faster analysis, and modification of the original code.
A very important feature of the library is that it works with systems that do not provide
the complete classpath, i.e., not all dependencies must be provided in order to analyze the
system. This situation can be considered the normal case in DPD as not always all transitive
dependency might be accessible. The basic class structure of the system is the same for

detecting DPs and MSs as both represent the same concept of role mappings.

Figure 2.3 shows the subsystems class diagram responsible for detecting patterns. Roles and
Patterns are Describables that have a name and description, where patterns additionally store
their associated Roles along with a Detector that can be used to detect itself. A detector is a
strategy implementing the detection of a specific pattern and returns a set of role mappings.
A RoleMapping maps multiple qualified names of (inner) classes and interfaces to specific
roles. Despite the fact that multiple qualified names can be stored on the same role within a
role mapping, the detector still needs to return a set of role mappings as multiple independent
instances of the same pattern may occur within a class, making them indistinguishable. The
example in Figure 2.3 depicts the implementation of the Inheritance MS with its Subclass
and Superclass roles, and its detector. The remaining micro-structures are implemented
similar to this example where the concrete detector strategies return the role mappings that

represent the class features.

The system detects 16 out of 16 EDPs, 27 out of 27 MPs and 18 out of 41 DPCs resulting
in a total of 61 MSs, some of them are slightly adapted to the purpose of design pattern
detection (MPs). Additionally the system detects 6 basic concepts of OO programming, that

are partly covered by some MSs in some situations. The reason for not implementing even

23



2.2. MS FEATURES CHAPTER 2. FEATURE EXTRACTION

Figure 2.3.: Describable is the base type of roles and patterns. Fach pattern defines a Factory
Method for its detector. Detectors return (candidate) RoleMappings which
contain the mapping between class (qualified name) and the role.

half of the DPCs is that DPCs are very specific in their definition thus being not helpful for

detecting design patterns they are not design for.

2.2.2. Micro-Structure Catalog

The following catalog provides the definitions of the MSs used in this work and is based on
Maggioni’s catalog [32]. It is reworked version in which MSs reflect the implementation that
was used to detect pattern within this approach. Furthermore the redefinitions operate on
basic OO constructs to remove previous ambiguities and to build a proper context in which

the predicates live.

Basic Elements

Basic elements define the abstraction for platform specific constructs. They provide basic
structures on which all MSs operate on and convenient functions that make the access to the
elements more readable.

Let 7 be the projection function that returns the i’th element of a tuple or a set such that
m3((1,2,3)) = 3 holds. Furthermore let the following structures be defined where the set

definitions are provided in the next section:
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Statement Element A statement is a tuple with its components C € TUMUTF and its type
T € T to which it resolves. Statements represent the formalism boundary and might
not be fully specified, i.e., if needed special statements (e.g., return statement) are
defined informally on the fly to retain readability. Statements usually invoke build in

operations or operations defined on types.

St = (C,T) (2.1)

Field Element A field is a triple consisting of its name N € ID, type T' € T and its modifiers
Mod C MOD. Fields store information of a specific types T

F:=(N,T, Mod) (2.2)

Method Element A method is a quintet consisting of its name N € ID, (return) type 7" € T,
its modifiers Mod C MQOD), its parameters P C T™ and its statements St C ST.
Methods execute an algorithm given by its statements and return some information in
form of T' (which might by a NULL/VOID type).

M = (N,T, Mod, P, St) (2.3)

Constructor Element A constructor is a quartet consisting of its name N € ID, its modifiers
M od C MOD), its parameters P C T" and its statements St C ST. Similar to methods,

constructors execute an algorithm but focus on the initialization of the enclosing object.

Co:=(N,Mod, P, St) (2.4)

Object Element An object is a tuple consisting of its placeholder name N € IID and its type
T € T. Objects are instances of a specific type.

0= (N,T) (2.5)

Type Element A type is a quintet consisting of its name N € ID, fields F' C F, methods
M C M, ancestors A C T and constructors C C CO. Types declare methods and

fields, i.e., data and operations, to encapsulate a specific idea.

T:=(N,F,M,A,C) (2.6)

Basic Collections

All reasoning is constrained on a System Under Inspection (SUI) S = {T1,T5,...T,} where
T defines a type that is part of the type system, e.g., Interfaces or Classes within the Java
language. Function and other special types are not considered as currently no DP or MS
makes use of them within this work. Collections of objects are, if not stated otherwise, always

relative to the system such that F = Fg.
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Types Types declared within the system.

Tg =S (2.7)

Interfaces Interfaces declared within the system that do not provide any implementation
detail.
I:={teT:Vm € ms(t) : abstract € modifiers(m)} (2.8)

Classes Classes declared within the system that provide implementation details.

C:=8\I (2.9)

Fields The set of fields within a system, a type, declared within a type or within a type’s

ancestors.

F = U{t eT:m(t)}
Fre={feF:fem(T)VvIacnyT): fe€ma)}
Fro={f€F:f€m(l)}

Ft =F; \Fr

(2.10)

Methods The set of methods within a system, a type, declared within a type or within a

type’s ancestors.

M = U{t eT:ms(t)}

My ={meM:men3(T)VIae€myT):mem3(a)}

(2.11)
Mp={meM:memn3(T)}
M = M \ My
Constuctors The set of constructors within a system or (declared) in a type.
CO = U{t eT:ms(t)}
COT ={ceCO:cens(T)VIa€mT):cems(a)} (2.12)
COp = {c€CO: ce m(T)} '
COf = COL \ COy
Attributes The set of attributes within a system or (declared) in a type.
A=FuM
A% = M UTF
oo (2.13)
Apr =My UFp
At = AL\ Ap
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Statements The set of statements within a system, type or method.

ST := ((U{m € M : m5(m)}) U ((U{e € CO: my(e)})
ST = (J{m € Mp : w5(m)}

STy = | J{m € My : m5(m)} (2.14)
ST# = ST% \ STr
STM = 7T5(M)

Objects The set of objects that a system or type can span.

Og = {all possible objects in S’}

(2.15)
Op = {all possible object of T'}
Identifier All valid identifiers on a specific platform.
ID = {all valid identifiers} (2.16)

Modifier A modifier represents a property of an element that restricts its access or makes
statements about the completeness of its definition. Abstract defines an element that
does not provide any implementation details thus applicable to types and methods.
Final states that a variable is not modifiable outside of its creation context. Private
states than the element is not accessible from outside its definition context, e.g., method
M is only visible within its declaring type T'. Static states that the attribute belongs
to the class and not to a specific instance, i.e., the attribute value is shared across all

instances.

MOD := {abstract, final, private, static} (2.17)

Basic Expressions

Basic expressions are OO properties that are usually part of the language. They are the basic

building blocks from which micro-structures are defined thus non-optional.

Name Returns the name of the artifact.

name(z) : TUAUQO — ID, x — m1(z) (2.18)

Type Returns the type of an object, field, statement, or method.

type(z) : AUSTUO — T, z — ma(x) (2.19)
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Declaring Type Returns the declaring type of an element.
declaringType(z) :F - T :m({t € T:x € ma(t)})
declaringType(z) : M - T:m({t €T :z € m3(t)}) (2.20)
declaringType(z) :C - T:m({t € T:x € m5(t)})

Modifiers Returns the modifiers of an element.

modifiers(xz) : A — MOD, z+— m3(x) (2.21)

Parameters Returns the parameters types of a method.

parameters(z) : M — T", x — m4(x) (2.22)

Signature Returns the signature of a method.

signature(z) : M — ID x T x T", x — (name(z), type(z), parameters(z)) (2.23)

Invocation Whether a statement invokes an attribute. Note that the invocation of a field
returns the field as a statement and allows further invocations on attributes defined
by the type of the field, e.g., Invokes(Invokes(ml, f1),m2) means that method m1l
invokes the field f1 which invokes the method m2 defined by f1. Note that the method

S x F — S is written in title case for interchangeability reasons between the predicates.

Invokes(a,b) : S xF —'S, (a,b) — returns b as statement
Invokes(a,b) : S x A, (a,b) — a invokes b (2.24)
Invokes(a,b) : F x A, (a,b) = b € Ayyperq) N Invokes(a, b)
Invokes(a,b) : M x A, (a,b) — Is € ST, : Invokes(s,b)

Abstract Whether a class defers some implementation details to subclasses, or whether a

method only declares its signature but deferrers its implementation to subclasses.

Abstract(z) : TUM, z+— abstract € modifiers(x) (2.25)

Final Whether the element can be modified outside of its creation context.

Final(z) : F, x — final € modifiers(x) (2.26)

Private Whether the element can be accessed outside its declaration context.

Private(x) : A, x — private € modifiers(z) (2.27)
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Static Whether the attribute is shared across all instances.

Static(z) : A, z — static € modi fiers(x) (2.28)

Ancestor Whether type a is the ancestor of type b (includes generalizations and realizations).

Ancestor(a,b) : T2, (a,b) — a € m4(b) (2.29)

FamilyHead Whether type a is a family head of type b, i.e., participates in the same

inheritance hierarchy but has no ancestor.

FamilyHead(a,b) : T2, (a,b) — Ancestor(a,b)

(2.30)
A AT € T : Ancestor(T,a)

Sibling Whether type a belongs to the same family as type b but are not in a Ancestor

relationship.

Sibling(a,b) : T2, (a,b) —
—(Ancestor(a,b) V Ancestor(b, a)) (2.31)
A3t € T : Ancestor(t,a) N Ancestor(t,b)

Primitive Whether the type is a primitive, e.g., integer, float, double, etc.

Primitive(r) : T, r — r is primitive (2.32)

Overrides Whether a method overrides an inherited method.

Overrides(m1,m2) : M2, (m1,m2)
signature(ml) = signature(m?2) (2.33)
N Ancestors(declaringType(m?2), declaringType(ml))

Replaces Whether a method overrides and replaces the implementation inherited.

Replaces(m1,m2) : M, (m1,m2) —
signature(ml) = signature(m?2
(m1) (m2) .
A Ancestors(declaringType(m2), declaringType(ml))

A ~Invokes(ml, m2)
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Refines Whether a method overloads and refines the implementation inherited.

Refines(ml,m2) : M2, (m1,m2) —
signature(ml) = signature(m?2)
N Ancestors(declaringType(m?2), declaringType(ml)) (2.35)
A Invokes(ml, m2)
A 3ds € STy,1 2 ~Invokes(s, m2)

Getter Whether a method is a Getter used to access a field.

Getter(x) : M, x — is a getter (2.36)

Setter Whether a method Setter used to modify a field.

Setter(x) : M, z — is a setter (2.37)

Micro-Structures

This is an alphabetical list of most micro-structures described by Smith [44], Maggioni et
al. [33], and Gil and Maman [17]. The definitions are based on the basic concepts from the
previous section and provide a new formal redefinition that removes almost all ambiguities
from their original definitions while still retaining their readability. The textual descriptions
are either reformulated, if it improves the understandability, or kept as their original authors
formulated them. The actual pattern definitions diverge from the original if the redefinition
is more appropriate in the context of DPD. The parameters of the predicates represent the

detected MS roles, i.e., the nodes within the ASG, and are always on a type level.

Abstract Interface Provides a common interface for a type family but deferrers the imple-
mentation details to subtypes.

EDP - Object Elements

AbstractInter face(r) : T,

r—=rel
(2.38)
V Abstract(r)
vV 3dm € M, : Abstract(m)
Abstract Products Returned A method returns a reference to an abstract class.
DPC - Return Information
Abstract Products Returned(c,p) : T2, (¢, p) (2.39)

dm € M, : type(m) = p A\ Abstract(p)
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Augmented Type A class with only abstract methods and three or more static final fields of
the same type.
MP - Data Managers

AugmentedType(r) : T, r —
{f €F, : Final(f) A Static(f)}| > 2 (2.40)
AVYm € M, : Abstract(m)

Box A class which has exactly one, mutable, instance field.

MP - Wrappers

Box(r) : T, r — |F,| =1A3f € F, : =Static(f) A ~Final(f) (2.41)

Canopy A class with exactly one instance field that it assigns exactly once, during instance
construction.

MP - Wrappers

Canopy(r) : T, r+— |F,| =1A3f € F, : =Static(f) A Final(f) (2.42)

Cobol Like A class with a single static method and at least one static field but no instance
fields.
MP - Degenerate Behavior

CobolLike(r) : T, r —
|Mr‘ =1A |]F7“ >0

(2.43)
A Im € M, : Static(m)
AVf € F, : Static(f)
Common State A class in which all fields are static.
MP - Degenerate State
CommonState(r) : T, r+— |F.| > 0AVf € F, : Static(f) (2.44)

Component Method A class declares a method that takes an object of the same class as its
single parameter.

DPC' - Method Signature Information

ComponentMethod(r) : T,
dm e M, :
(2.45)
|parameters(m)| =1

A 1 (parameters(m)) =r
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Compound Box A class with exactly one non primitive instance field.

MP - Wrappers

CompoundBox(r) : T, r+— |F,| =1 A3f € F, : =Static(f) AN ~Primitive(f) (2.46)

Concrete Products Returned A method returns objects that belong to subclasses extending
the class that represents the declared method return type.
DPC - Return Information

ConcreteProduct Returned(c,p) : T2, (¢, p)
dm € M., ds € ST, :
Ancestor(type(m), p) (2.47)
Atype(s) = p

A s is the return point

Conglomeration A type contains a method that calls another method within the same type.
EDP - Method Call

Conglomeration(r) : T, r+—

(2.48)
Im1,m2 € M : ml # m2 A Invokes(ml, m2)
Data Manager A class where all methods are either setters or getters.
MP - Data Managers
DataManager(r) : T, r+— ¥Ym € M, : Setter(m) V Getter(m) (2.49)

Delegate A type contains a method that delegates a proportion of its task to a method in a
different type.
EDP - Method Call

Delegate(so, ta) : T2, (so,ta) —
so # ta
AJml € My, Im2 € My, : (2.50)
Invokes(ml,m2)

A name(ml) # name(m?2)

Delegated Conglomeration A type contains a method that calls another method within the
same type via a utility object of the same type.
EDP - Method Call

DelegatedConglomeration(r) : T,r —
af € F, : type(f) =r (2.51)
A 3dml,m2 € M, : ml # m2 A Invokes(Invokes(ml, f), m2)
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Deputized Delegation A type contains a method that delegates a proportion of its task to
a class within the same hierarchy.
EDP - Method Call

TrustedDelegation(so, ta) : T2, (so,ta) —
Sibling(so, ta)
AN3f € Fy : type(f) = ta
A dml € Mg,,3m2 € My, :
Invokes(Invokes(ml, f), m2)

(2.52)

A name(ml) # name(m?2)

Deputized Redirection A type contains a method that redirects a proportion of its task to
a class within the same hierarchy.
EDP - Method Call

DeputizedRedirection(so, ta) : T2, (so,ta) —
Sibling(so, ta)
A3f € Fy, : type(f) =ta

(2.53)
A dml € Mg,, Im2 € My, :
Invokes(Invokes(ml, f), m2)
A name(ml) = name(m?2)
Designator An interface with absolutely no members.
MP - Degenerate State and Behavior
Designator(r) : 1, r— A, =0 (2.54)

Extender A class which extends the inherited protocol, without overriding any methods.

MP - Inheritors
Extender(r) : C, r —
M, £ 0
AVml € M,,Im2 € M :
—Public(m1) V =Overrides(ml, m2)

(2.55)

Extend Method A type contains a method that overloads an existing parent method.
EDP - Method Call

ExtendMethod(sup, sub) : T2, (sup, sub) —
Ancestor(sup, sub) (2.56)
A 3ml € Mgy, Im2 € My, : Refines(ml, m2)
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Function Object A class with a single public instance method and at least one instance field.

MP - Degenerate Behavior

FunctionObject(r) : T, r+—
|F.| >0A|M,|=1 (2.57)
A Im € M, : =Static(m) A Public(m)

Function Pointer A class with a single public instance method, but with no fields.

MP - Degenerate Behavior

FunctionPointer(r) : T, r —
F,=0AM,|=1 (2.58)
A Im € M, : =Static(m) A Public(m)

Inheritance A type reuses the interface and implementation of its ancestors.
EDP - Type Relation

Inheritance(sup, sub) : T2, (sup, sub) — Ancestor(sup, sub) (2.59)

Instance In Abstract Class An abstract class has a reference to another class.

DPC - Instance Information

InstanceInAbstractClass(a,r) : T2, (a,r) —
Abstract(a)
(2.60)
ANa #r

A3f €F, :type(f) =r

Joiner An empty interface joining two or more super-interfaces.

MP - Degenerate State and Behavior

Joiner(r) : I, r —
A =10
ATil,i2 €l :
Al # 02
A =(Ancestor(il,12) V Ancestor(i2,il))

(2.61)

N Ancestor(il,r) N Ancestor(i2,r)
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Immutable A class with several instance fields, which are assigned exactly once, during
instance construction.

MP - Degenerate State

Immutable(r) : T, r —
(2.62)
{f € F, : =Static(f) A Final(f)}| > 1

Implementor A class that has at least one method and in which all public methods override
inherited abstract methods.

MP - Inheritors
Implementor(r) : C, r —
M, # ()
AVYml € M,.,3m2 € M :
—Public(ml) V (Overrides(ml, m2) A Abstract(m?2))

(2.63)

Instance In Abstract Referred A method of a class implementing Instance In Abstract Class
invokes a method on the declared instance.

DPC - Method Body Information

InstanceInAbstractRe ferred(a,r) : T, (a,r)
InstanceInAbstractClass(a,r) (2.64)
Ads € STy, m € M, : Invokes(a, m)

Leaf Class A subclass extends a superclass that contains a Component Method but does not
override it.
DPC - Method Set Information

LeafClass(r) : T, r—
dp € T : Ancestor(p,r)
AmleM,:
(2.65)
|parameters(ml)| =1

A 1 (parameters(ml)) = p

A Am2 € M, : Overrides(m2,ml)

Multipile Trusted Redirection A class containing Trusted Redirection EDP within a cycle.
DPC - Method Body Information

MultipleTrustedRedirection(so, ta) : T2, (so,ta) + TrustedRedirection*(so, ta),
(2.66)

where * states that the pattern is executed within in a loop on a collection.

35



2.2. MS FEATURES CHAPTER 2. FEATURE EXTRACTION

Node Class A subclass extends a superclass that contains a Component Method and which
it redefines.
DPC - Method Set Information

NodeClass(r) : T, r+—
dp € T : Ancestor(p,r)
Aml e M, :
(2.67)
|parameters(ml)| =1

A 71 (parameters(ml)) =p

A Im2 € M, : Overrides(m2,ml)

Outline A class where at least a method invokes an abstract method belonging to the same
class.

MP - Data Managers

Outline(r) : T, r+—
dml,m2 € M, : ml # m2
(2.68)
A Invocation(ml, m2)

N Abstract(m2)

Overrider A class that has at least one method and in which all public methods override
inherited non-abstract methods.
MP - Inheritors

Overrider(r) : C, r +—
M, # 0
AVYm1 € M., 3m2 € M :
—Public(ml) V (Overrides(ml, m2) A ~Abstract(m?2))

(2.69)

Parent Product Returned A method returns a reference to the parent class of its declaring
class.

DPC - Return Information

ParentProduct Returned(c,p) : T2, (¢,p) —

(2.70)
Im € M, : type(m) = p A\ Ancestor(p, c)
Pool A class which declares only static final fields, but no methods.
MP - Degenerate State and Behavior
Pool(r) : T, r— M, =0AVf €T, : Static(f) (2.71)
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Private Self Instance A class has a private instance of itself. Access to this instance can
occur only from within the same class.

DPC - Instance Information

PrivateSel fInstance(r) : T, r— 3f € F, : type(f) = r A = Public(f) (2.72)

Protected Instantiation All the constructors within a given class are declared private.

DPC - Method Signature Information

ProtectedInstantiation(r) : T, r +— Ve € CQO, : public € ma(c) (2.73)

Pseudo Class A class which can be rewritten as an interface: no concrete methods, only
static fields.
MP - Data Managers

PseudoClass(r) : T, r+— ¥Ym € M, : Abstract(m) A\Vf € F, : Static(f) (2.74)

Pure Type A class with only abstract methods, and no static members, and no fields.

MP - Data Managers

PureType(r) :, v+
F, =0 AM, # 0 (2.75)
AVYm € M, : Abstract(m) A =Static(m)

Record A class in which all fields are public and methods are declared.
MP - Data Managers

Record(r) : T, r— |M,| =0AVf € F, : Public(f) (2.76)

Recursion A type contains a method that solves a problem by recursively calling it self.
EDP - Method Call
Recursion(r) : T, r —

(2.77)
dm € M, : Invokes(m,m)
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Redirect A type contains a method that redirects a tightly related task to a similar method
in a different type.
EDP - Method Call

Redirect(so, ta) : T2, (so,ta) —
s0 # ta
AJml € My, Im2 € My, : (2.78)
Invokes(m1,m2)

A name(ml) = name(m?2)

Redirected Recursion A type contains a method that solves a problem by recursively calling
itself via a utility object of the same type.
EDP - Method Call

RedirectedRecursion(r) : T, r +—
af € F, : type(f) =r (2.79)
A 3dm € M, : Invokes(Invokes(m, f), m)

Reference To Abstract Class A class attribute is a reference to an abstract class.

DPC - Instance Information

ReferenceToAbstractClass(r,a) : T2, (r,a)
Abstract(a) (2.80)
A3f € F, :type(f) =a

Restricted Creation A class with no public constructors, and at least one static field of the
same type as the class.
MP - Controlled Creation

RestrictedCreation(r) : T, r+—

Ve € CO, : ~Public(c) (2.81)
A 3f € B, : Static(f) A type(f) =7

Retrieve A class uses a Source to obtain an instance for a non local object (Retrieved) hence
acts as Sink.
EDP - Object Elements

Retrieve(si, so,re) : T3, (si,so,7€) —
af € Fyi : type(f) = so (2.82)
A ds € ST, Ja € Aso : Invokes(s, a) A type(a) = re
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Revert Method A type contains a method that provides no implementation details but
reuses the parents implementation.
EDP - Method Call

RevertMethod(sup, sub) : T2, (sup, sub) —
Ancestor(sup, sub)
A Iml € Mgyp, Im2 € Mgy, ¢ (2.83)
signature(ml) = signature(m2)

A sl € My, : Invokes(sl,m2)A\ As2 € My, : s1 # s2

Same Interface Container A class contains a set or a list of elements that are compatible
with the same interface of the declaring class.

DPC - Instance Information

Samelnter faceContainer(h,r) : T2, (h,r)
h#r
AT €y type(ff) =r
A dp € T : Ancestor(p, h) A Ancestor(p,r),

(2.84)

where _* describes a collection variable or the element type of a collection.

Same Interface Instance A class contains a reference to an object whose type is compatible
with the same interface of the declaring class.

DPC - Instance Information

Samelnter faceInstance(h,r) : T2, (h,r) —
h#r
A3f € Fy : type(f) =r
A 3dp € T : Ancestor(p, h) A Ancestor(p,r)

(2.85)

Sampler A class with one or more public constructors, and at least one static field of the
same type as the class.
MP - Controlled Creation
RestrictedCreation(r) : T, r —
Jde € CO, : Public(c) (2.86)
A 3f € F, : Static(f) A type(f) =7

Single Self Instance A class maintains a unique instance of itself, no matter if it is static or
not.

MP - Instance Information

SingleSel fInstance(r) : T, r+— 3f € F, : type(f) =7 (2.87)
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Sink A class whose methods do not propagate calls to any other class.

MP - Data Managers

Sink(r) : T, r— Aml € M,,m2 € M\ M, : Invokes(ml,m2) (2.88)

Stateless A class with no fields other than static final ones.
MP - Degenerate State

Stateless(r) : T, r+— Yf € F, : Static(f) A Final(f) (2.89)

State Machine An interface whose methods accept no parameters.

MP - Data Managers

StateMachine(r) : T. r — M, # 0 AVm € M, : parameters(m) = () (2.90)

Static Self Instance A class has a static instance of itself. Therefore this instance is unique
inside the system.

DPC - Instance Information

StaticSel fInstance(r) : T, r+— 3f € F, : type(f) = r A Static(f) (2.91)

Taxonomy An empty interface extending another interface.

MP - Degenerate State and Behavior

Taxonomy(r) : I, r —
A —0 (2.92)
A Ji €1 Ancestor(i,r)

Template Implementor A method calls at least an abstract method within its body.

DPC' - Class Declaration Information

TemplateImplementor(r) : T, r —

(2.93)
3t € T : Ancestor(t,r) A TemplateMethod(t)
Template Method A method calls at least an abstract method within its body.
DPC - Method Body Information
TemplateMethod(r) : T, r —
(2.94)

dam € M,, s € M, : Abstract(am) A Invokes(s,am)

Trait An abstract class which has no state and defines at least one template method.

MP - Data Managers

Trait(r) : T, r+—F, =0 A3m € M, : Abstract(m) (2.95)

40



CHAPTER 2. FEATURE EXTRACTION 2.2. MS FEATURES

Trusted Delegation A type contains a method that delegates a proportion of its task to a
method within the same class hierarchy.

EDP - Method Call

TrustedDelegation(so, ta) : T2, (so,ta) —
FamilyHead(ta, so)
AN3f € Fyp: type(f) = ta
A dml € My,,3m2 € My, :
Invokes(Invokes(ml, f), m2)

(2.96)

A name(ml) # name(m?2)

Trusted Redirection A type contains a method that redirects a tightly related task to a
similar method within the same class hierarchy.

EDP - Method Call

TrustedRedirection(so, ta) : T2, (so,ta)
FamilyHead(ta, so)
A3f € Fyp : type(f) = ta
A dml € Mg, Im2 € My, :
Invokes(Invokes(ml, f), m2)

(2.97)

A name(ml) = name(m?2)
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3. Candidate Sampling

The input of the candidate sampling are the extracted class features, which are the role
mappings of the micro-structures. Output of this stage are design pattern candidate role
mappings, i.e., potential instances of a predefined design pattern along with the features
extraction in the previous stage. Figure 3.1 depicts this process which is an important step
to enable the detection of design patterns. As discussed, role mappings link concrete classes

to specific pattern roles, and these links spans a search space of

n n!
€= (k) = W &y

potential mappings where n is the amount of available classes, and k£ the number of roles
that need to be mapped. Obviously the search space is beyond computational viability for
real world applications and the problem gets worse if partial role-mappings are considered

i.e., not all roles have class assignments. In this situation the search space increases to

" (n

c* = =2" 3.2

> (k (3:2)
k=0

candidate mappings, representing the power set of n elements. This huge search space

motivates the process of candidate sampling which searches for potential mappings. In

contrast to filtering, sampling does not inspect the entirety of the search space but uses

domain knowledge to retrieve only the useful proportion of it.

Candidate
Sampling

Figure 3.1.: The candidate sampling process takes the class features of all available classes
and returns candidate mappings. Candidate mappings fulfill the basic structural
properties a pattern has hence qualifies for the detailed analysis via the inference
method. Each pattern has its own sampler that traverses the ASG and collects
classes (nodes) that make up a candidate mapping.

As mentioned in Chapter 1.2 many DPD systems feature this sampling phase, nevertheless
implementations vary as different inference approaches impose different requirements. Niere
et al. [36] frame the 2-step filtering and inference step into a bottom-up and top-down
strategy using a rule based approach. The detection process is tailored around rules that
are applied to an annotated abstract syntax graph. These rules have different levels that are
dictated by their dependencies to other rules. Rules without any dependencies are level 1

rules and can be applied to a graph node immediately. Level 2 rules or greater must resolve
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their dependencies first in order to be applied. First the bottom-up strategy applies level 1
rules that are stored within a priority queue. Processed rules are removed from the queue but
may add new rules that depend on it, e.g., after applying the Inheritance rule the higher-level
Composite rule is added to the queue and executed next. The Composite rule represents the
detection of the Composite pattern and thus kickstarts the top-down phase. The top-down
phase resolves now all remaining rule dependencies for the Composite rule until the additional
top-down priority queue is empty or the resolution fails. This effectively handles the size
of the search space by iteratively applying lower level rules to add new top-level rules and
resolving these in a greedy fashion. The phases are interleaved such that certain condition

pre-filter the space and trigger the actual inference step as certain requirements are fulfilled.

Anotoniol et al. [4] uses a multistage filter /extraction process in which class level metrics
and the shortest path in a graph are reformulated into constraints. Each design pattern
usually inhibits a set of class level metrics that need to be fulfilled in order for the pattern
to work. For example an instance of the Chain of Responsibility pattern must delegate a
message to classes of the same hierarchy at some point, otherwise the semantics of the pattern
would be contradicted. Thus a class level metric might be the number of delegations and
the constraint formulation would be x > 0 with = being the number of delegations. This
pre-filters all the class combinations for the shortest-path constraint evaluation in which
patterns are interpreted as graphs with a shortest path. The remaining system is now analyzed
for minimal sets that fulfill the shortest path criterion imposed by the pattern. Although
effectively reducing the search space, classes that participate in multiple roles and structural
differences in the pattern instance can not be found by the extraction affecting the recall of

the procedure.

Gueheneuc et. al [19] proposed the fingerprinting method mentioned in Chapter 2 as means
to find candidate mappings. The advantage of fingerprinting is that it is computationally
efficient and easy to implement nevertheless lacks a high recall for all roles. Alhusain et al.
[1] used similar metrics as Gueheneuc and applied feature selection methods to find the most
import among them. After that a rule learner was used to identify conditions a class must
meet in order to be an instance of a certain role. Another possibility they tried out was to
train a neural network that can identify whether a class matches a designated role or not.
The result of these methods where role mappings but without the actual pattern context.

This enables preliminary filtering of classes and reducing the effective search space.

MARPLE-DPD, implemented by Fontana and Zanoni et al. [5], incorporates a Joiner
module with the purpose of extracting candidate instances of a design pattern. An early
version of the tool used micro structures in form of joiner rules that need to be fulfilled to
find candidate mappings. The system under inspection is transformed into a graph and the
possible classes are sampled from the graph according to the rules. This approach is very
similar to the approach used within this work as it can be easily understood, implemented and
is very intuitive. Later versions [57] use the resource description framework to represent the
system under inspection and the pattern as graph that are then matched via graph matching

algorithms.
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Uchiyama et al. [52] trained neural networks to detect whether a class is of a certain role
or not. The input are metrics and the output of the network is the probability that the given
class (represented by its features) is an instance of a certain role. Detected roles are not
grouped by their pattern but instead all available roles (12 roles) are judged at the same time.
Depending on these results the user may enter the patterns that should be detected. The
algorithm than follows the ASG of system to collect the remaining classes that comply with

the patterns structure.

3.1. Heuristic Search

From Equation 3.1 it can be easily concluded that the naive approach is not feasible even
for small systems. One problem with the naive search is that design patterns are made up
of multiple roles leading to many different combinations that need to be checked. Another
problem is that the naive search inspects combinations of classes that are illogical from
a software engineering perspective, i.e., class combinations in which the classes have no
relationship what so ever. Heuristic search is a way to mitigate this issues by only selecting
sensible combinations of classes and ignoring the remainder. Similar to the methods presented
above, heuristic search uses structural and behavioral information about classes to decide

whether a certain combination is a candidate for a pattern or not.

Heuristic search follows certain paths within the ASG and collects nodes along the way.
Instead of searching a combinatorial space, heuristic search only operates on the already
very limited space an ASG can span. This mitigates the problem that unrelated classes are
grouped together. Each pattern defines an anchor role that serves as entry point for the
search. Anchor roles are usually related to the Inheritance MS as most of the DPs are defined
over class inheritance. The sampling process inspects all classes starting with the property
the anchor role imposes on the classes (e.g., superclass). If a matching class is found, it will
continue to traverse the ASG such that all roles of the target pattern have a sensible mapping
or not. For some patterns it makes sense to allow partial mappings, i.e., not all standard
roles have a class assign because two ore more roles have been merged together. This is a
very typical implementation detail that software developers use thus a common situation.
For instance the Creator and Concrete Creator from the Factory Method pattern are often
merged together as it allows the developers to add a default behavior to the factories. The
samplers are derived by declaring an anchor role for a given pattern and moving along the
direct connected nodes within the ASG. Constraints are added to the traversal such that
the patterns communication protocol is considered, but all other possible combinations are
ignored. This is done in a recursive fashion from role to role within a pattern until all roles (or
a subset for partial mappings) have a class mapping. This very easy method is best explained
by example which are given in the next sections. Each section explains the heuristic search
for a specific pattern where the examples are based on the work of Gamma and his colleagues
[15]. Descendants will be used to refer to all children in a type hierarchy, i.e., all subclasses if

object A is a class, or all sub interfaces or realizations and their subclasses if A is an interface.
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3.1.1. Adapter Sampling

Figure 3.2 depicts the workflow of the sampler for the adapter pattern. There are three roles
that need to be found, Target, Adapter and Adaptee. Client was removed from the original
set of roles as it is a universal role applicable to all patterns that does not provide any useful

information in the context of DPD.

1. Anchor role: Is every class or type that functions as Target, i.e., has descendants.

2. Extracts all descendants from Target that function as Adapters.

3. Extracts all associations from Adapters that function as Adaptees and groups them to
their respective Adapters.

4. Additionally extracts all descendants of the Adaptees and groups them to their respective
Adaptee.

The sampler uses the Inheritance and the Association MSs and does not allow partial
mappings as all roles are crucial for the pattern’s semantics. Grouping the endpoint of
relations to the respective sources is often not needed in order to build candidate mappings
but greatly reduces the amount of candidates. For instances it would be possible to build
candidates by simply collecting all subclasses from Target and all associations (plus subclasses)
from the Adapters, without respecting their source. Nevertheless this again creates a huge
amount of candidates that are (i) illogical from a ASG view point, (ii) unnecessarily increasing

the amount of candidates leading to more false positives in the detection.

F @ Anchor
®

®

@

Figure 3.2.: The adapter sampler (i) starts form the anchor which is a class that has descen-
dants, (ii) collects all descendants, (iii) collects all associations of the descendants
and groups them to their respective Adapter and (iv) collects all descendants of
the Adaptees and groups them to their respective Adaptee.

3.1.2. Composite Sampling

The workflow of the composite sampler is rather simple and presented in Figure 3.3. Again,

the Client role has been removed which permits the exclusive use of the Inheritance MS to
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find all candidate mappings. In fact the removal of the client role is essential as too many
classes would fit this role causing the set of candidate mappings to explode. The sampler does
not allow partial mappings, thus merging of Component and Composite is not considered as

a candidate mapping.

1. Anchor role: Is every class or type that functions as Component, i.e., has descendants.

2. Extracts all descendants from Component that function as Leafs or Composites.

@ Anchor

Figure 3.3.: The composite sampler (i) starts form the anchor which is a class that has
descendants and (ii) collects all descendants which are used as Leaf or Composite.

3.1.3. Decorator Sampling

Component functions as an anchor role for the decorator sampler as given in Figure 3.4.
Again, it would be possible to simply collect the descendants form the anchor to compute all
combinations which definitely covers the patterns communication structures. Nevertheless
this increases the amount of resulting candidate mapping by orders of magnitudes thus
more restrictive constraints are applied. The constraints enable the sampler to distinguish
between Concrete Component and Decorator via a self association. Merging the Decorator

and Concrete Decorator is allowed as this is a very typical variant of the pattern.

1. Anchor role: Is every class or type that functions as Component, i.e., has descendants.

2. Extracts Concrete Components and Decorator from the descendants grouped by the
self association constraint.

3. Extracts all descendants of the Decorator as Concrete Decorator grouped by the their

respective Decorator.

3.1.4. Factory Method Sampling

Many projects implement some sort of factory mechanism, either simple static methods in

the class, builder classes with a fluent Application Programming Interface (API), dedicated
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@ Anchor

o

Figure 3.4.: The decorator sampler (i) starts form the anchor which is a class that has
descendants, (ii) collects all descendants and groups the Decorators and Concrete
Components depending whether they have a self association or not, (iii) collects
all descendants of the Decorators and groups them to their respective Decorator.

factory classes or via dependency injection containers. The variety is even further enriched if
all implementation variants are considered making the detection process harder and even
human oracles might not conclude to the same decision. The role Creator and Product are the
abstractions and Concrete Creator and Concrete Product their respective implementations.
Being the most complicated sampler of all, the Factory Method sampler needs 4 dedicated
steps (shown in Figure 3.5) to find most of the candidate mappings and allows for partial
mappings in which Creator and Concrete Creator are merged into one role. It uses the
Inheritance MS and a modified Association in which constructor calls, method invocations
and method return types are considered. The Products are grouped by their Creator to

reduce the overall result set but may cause the removal of true candidate mappings.

1. Anchor role: Is every class or type that functions as Creator, i.e., has descendants.

2. Extracts all descendants from Creator that function as Concrete Creator.

3. Extracts all associations from the Creators (including the abstract Creator) that function
as Product and groups them to their respective Creator.

4. Extracts parents and descendants from Concrete Product and reorganizes them into a

proper hierarchy.

3.1.5. Singleton Sampling

The singleton is the smallest design pattern as it hosts only one role, thus does not suffer from
any combinatorial explosion caused by multiple role mappings. All classes are candidates for
the Singleton pattern except for pure interfaces that cannot be initialized. This leads to a

very small set of candidates nevertheless still smaller than with the naive approach because
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Figure 3.5.: The factory method sampler (i) starts form the anchor which is a class that has
descendants, (ii) collects all descendants as Concrete Creators, (iii) collects all
associations of the Creators as Products and, (iv) collects all related class from
the products as Products.

the removal of interfaces. The anchor is of course the one Singleton role and is every class

that can have a constructor.

3.1.6. Template Method Sampling

Template Method has the roles Abstract Class and Concrete Class that are connected via
inheritance. This simple structure allows the sampler the exclusive use of the Inheritance
MS which allows efficient candidate sampling as Figure 3.6 shows. No partial mappings are

allowed as it would break the purpose of the pattern itself.

1. Anchor role: Is every class or type that functions as Abstract Class, i.e., has descen-
dants.

2. Extracts all descendants from Abstract Class that function as Concrete Class.

3.1.7. Technical Overview

Candidate sampler are again an instance of the Strategy pattern where each sampler described
in Section 3.1.1 - 3.1.6 takes the role of a Concrete Strategy illustrated in Figure 3.7. A
Detector has a factory method to create its sampler which is then used in the BaseDesign-
PatternDetector that implements the basic detection process. The interface hierarchy of the
DesignPatternDetector can be seen as an instance of the Template Method as getFeatures and
createSampler are steps needed in the detect algorithm. In sum there are 6 candidate sampler

implementations since each design pattern detector provides one implementation. Samplers
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@ Anchor

Figure 3.6.: The template method sampler (i) starts form the anchor which is a class that
has descendants, (ii) collects all descendants that function as Concrete Class

themselves implement the sample method which takes a type (a type from the system under
inspection) and the detection context which is a collection of all previously detected patterns
along with the ASG. It then checks whether the given type is an instance of the predefined
anchor role and proceeds the sampling process accordingly if the conditions are met. This is
executed for each type within the system thus the complexity is linear with the system size.

Result of the algorithm is a list of RoleMappings that function as the candidates.

T -
—_—

Figure 3.7.: Candidate samplers can be created via their detectors take a type which is
checked whether it is an instance of the predefined anchor role.
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Table 3.1.: Table of the cumulated naive space and heuristic space (H. Space) of all projects.
Mapping Count are all known instance of the pattern in the projects. Naive Space
are all candidate mappings within the naive space. H. Space (FP/TP) are all
candidate mapping within the heuristic space. H. Proportion is the proportion of
the heuristic space in the naive space. Recall is the coverage of TP to all known
TP of the H. Space.

Pattern Known TP Naive Space H. Space FP H. Space TP H. Space H. Proportion Recall
Adapter 172 46,192,862 106,937 164 107,101 2.318 107! 953
Composite 210 46,192,862 32,126 210 32,336 6.968 -1072 1.00
Decorator 170 5,432,630,268 688 160 848 1.560 -107° 941
Factory Method 462 5,435,630,268 21,857 91 21,948 4.040 -10~4 196
Singleton 13 2,012 1858 13 1,871 9.299 -10+! 1.00
Template Method 82 336,664 2,099 82 2,181 6.478 107! 1.00

3.2. Evaluation

Table 3.1 contains the cumulated mapping count over all projects for each pattern, i.e.,
all known instances of the patterns (peer reviewed instances), along with several metrics
describing the size of the naive space and the heuristic space (H. Space) spanned by the
algorithms above. Note that some instances were removed from the original data set because
they are faulty or inaccessible (for more details see Section 3.2.1). The first column describes
the amount of peer reviewed instances of each pattern where Factory Method is leading
with 462 and Singleton is last with 13 instances. Of course these numbers do not reflect
the popularity of the patterns as the Singleton pattern has 13 unique instances in contrast
to Factory Method having only 7 unique instances. As discussed above, unique instances
describe instances of the pattern that are independent form each other, i.e., do not share
the same primary roles but provide a complete new variant for a pattern. The amount of
true positive samples for each pattern is rather small in the context of machine learning, but
respectable for the small amount of projects they were drawn from. All projects together
comprise 2012 types, which lead, depending on the amount of roles, to a maximum space of
5,432,630, 268 candidate mappings and a minimum size, for the one-role pattern (Singleton),
of 2013 candidates. The heuristic space spans at most 106.937 candidates which might be an
alarming amount, nonetheless this captures the cumulative space spanned by 8 non-trivial
projects. The actual size of the H. Space with respect to the naive space is given by the H.
Proportion where the best reduction was reached by the Decorator sampler that reduces the
initial space to a fraction of 1.56 - 107° candidates. Interestingly the second best reduction
was reached by the Factory Method sampler which is also impaired with the worst recall
as the sampler only reaches a recall of 19.69% (discussion below). Despite this extreme, all
samplers have virtually 100% recall thus fulfill their purpose of finding all true positives and

still providing a manageable set of candidates.

Figure 3.8 provides information of the number of candidates per project in form of box plots
on a logarithmic scale ordered by the number of roles per pattern. The green and orange boxes

are results from the naive approach and the blue boxes from the heuristic search. Expectations
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for the one role case (Singleton) are that naive and heuristic approach perform equally good,
which is in general the case. The H. Space with u = 233.87;0 = 151.91 Candidates per
Project (C'/P) is on average 17.75 C/P smaller as the naive space (1 = 251.62;0 = 155.97 )
since Java interfaces can never implement the Singleton pattern (as they are not instantiable),
thus are not sampled. Surprisingly the Template Method has on average only 38.75 C'/P
more than the Singleton space, where in contrast the naive approach already reaches 2
magnitudes higher with p = 42,083.0; 0 = 51,693.39 C'/P. This indicates that the heuristic
search does not produce candidates sets that grow exponential with the amount of roles and
types within a system. This seems to be a premature conclusion as the amount of candidates
increases by nearly a factor of 2 for the Adapter pattern (u = 13,387.62; 0 = 16, 759.96) which
has 3 roles, nevertheless this is the biggest space spanned by heuristic search. Composite
(1 = 4042.0;0 = 4907.78), Decorator (u = 106.000;0 = 129.2440) and Factory Method
(1 = 2743.500; 0 = 2356.23) span a smaller candidate space although having the same or more
amount of roles. The big leap between Template Method and Adapter (and the remaining
patterns) is caused by the association that need to be considered during sampling, and of
course these are usually plentiful.

There is no reliable way to predict or analytically compute the true growth function from
the plain number of types as the growth mostly depends on the systearchitecture. The high
standard deviation of the results come from the fact that the projects are of different sizes and
that the amount of candidates strongly rely on the internal inheritance hierarchies. Figure
3.9 provides more insight into the distribution of candidates per projects where again the
heuristic approach is given in blue. The naive approach indicates an exponential growth as
the means grow approximately linear with the size of the projects. This trend can not be
seen with the heuristic approach, nevertheless big boxes indicates a rather high deviation
per pattern within a project. The bottom whisker is nearly equal for all project caused by
the singleton pattern. An exception to this trend is the Lexi project as it is a rather small
project (96 types) with many inner classes and only implementing one of the 6 patterns -
the Singleton pattern. Top whisker reach from 10% to 10* which is an acceptable amount
of candidates to process but also implies a possible large amount of false positives in the
inference step. This is an issue that need to be addressed in order to get acceptable prediction
results and may be handled by removing secondary roles from the sampling processes as

several other research groups already do.

3.2.1. Discussion of Noteworthy Instances

All samplers are developed with the goal to provide maximum coverage in terms of true
candidate mappings with the smallest possible amount of mappings. This is done by walking
the ASG in such a way that most true mappings are found. Tailoring the sampling process to
the available dataset might introduce a bias towards the presented implementation variants,
nevertheless the used relationships are very basic and usually inherent in the patterns rational.
An example for this situation would be the inheritance in the template method which could be

rewritten into a composition in which the abstract methods are delegated to an unrelated class
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Search Space Across Projects (2012 types)
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Figure 3.8.: The box plots show the difference between the number of candidate mappings
across projects for each pattern on a logarithmic scale. The naive approach
produces constantly larger amounts of candidate mappings with a maximum over
10° candidates. Difference between Mod and Orig is that Mod does not contain
the Client role, whereas Orig describes the pattern in its original definition. The
amount of candidates produced by heuristic search is in the region of 102 — 104
and depends on the the projects ASG density and the pattern structure.

that provides the desired functionality. Though technically possible, this specific rewriting
nonetheless stands in the face of the patterns intent to provide a skeleton for a closed algorithm
in which only a few steps are deferred to a subclass. The abstract class is the skeleton,
promising one specific algorithm that is only completed with its subclasses. This fact does not
hold for the composition implementation as the abstract class would potentially be complete
even without the deferring class. Furthermore the semantic coupling between deferring class
and abstract class is more loose such that they do not represent one specific algorithm.
Obviously the added semantics may be defined ambiguous or developers simply interpret
it in a different way such that certain variants are seen as an instance of a pattern or not,
depending on the viewer. Another situation is where the pattern implementation is "polluted"
with anti-patterns or bad practices that make the detection even for experts difficult. This of
course is the main problem of design pattern detection, but the open question on "where to
draw the line" between variants of a pattern and the fact that a role mappings is not proper

instance of a pattern remains.

For instance one peer reviewed Adapter instance is not included into the result set of its
sampler because the example does not include a class for the Adaptee role. Many software
engineers would not classify this mapping as a proper instance of the Adapter pattern simply
because of the missing Adaptee that the Adapter is trying to adapt. The absence of this
key role is illogical in the context of the pattern and the entire instance does not fulfill the

patterns purpose, thus should not have been included into the peer reviewed repository at all.
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Search Space Across Patterns
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Figure 3.9.: The box plots show the difference between the number of candidate mappings
across patterns for each project on a logarithmic scale. Heuristic search does not
react exponential to the number of types within a system as the naive approach.
The seemingly equal lower whisker is caused by the singleton pattern which
always has constant candidate size.

Another debatable example would be given by a not sampled Decorator instance in which
the Concrete Component and Decorator are mapped to the same class. The advantage of
the Decorator pattern is that new responsibilities can be attached to a Component during
runtime but attaching the same responsibilities to an object only adds a level of indirection
without any additional effects. Obviously this instance can be ignored which would increase

the sampler recall to nearly 1.

The worst performance is given by the Factory Method sampler which only reaches a recall
of .196, but why is that so? As already mentioned, the way objects are constructed is manifold
and of course there are also various implementation variants of the Factory Method. One
interesting example for a variant of the pattern is given by Listing 3.1 in which the "xHandle"
is the Product. The peer reviewed mappings contain instances that map ConnectionHandle
and NullHandle to the Concrete Product, and NodeFigure to Concrete Creator role. There is
nothing wrong with this relationship at the first glance but obviously the implementation is a
rather bad example of the pattern. Not only obscures the return type the actual constructed
product, but also the fact that the method creates multiple products (Product < Handle )
degrades the quality of the interfaces as it is not clear what the factory creates in this examples
(from an APT user perspective). This problem is of course partially related with the fact that
the code base is rather dated thus no generics could be used in order to clarify the actual
product. The sampler is nonetheless able to correctly find these instances. More interesting
is the fact that there exist mappings for each direction (EastHandle, WestHandle, ...) for
the same creator despite the fact that RelativeLocator.west() returns an instance of the class
RelativeLocator. These classes are siblings and do not stand in a child parent relationship.

Listing 3.2 contains the WestHandle implementation which is also parameterized via the
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Listing 3.1.: Node Figure implements a Factory Method for the ConnectionHandle and
NullHandle but also for WestHandle. WestHandle is not explicitly defined as
dependency but the ConnectionHandle that is equally parameterized hence
behaves similar.

public class NodeFigure extends TextFigure {

public Vector handles() {
ConnectionFigure prototype = new LineConnection();
Vector handles = new Vector();
handles.addElement (new ConnectionHandle(this, RelativeLocator.east(), prototype));
handles.addElement (new ConnectionHandle(this, RelativeLocator.west(), prototype));
handles.addElement (new ConnectionHandle(this, RelativeLocator.south(), prototype));
handles.addElement (new ConnectionHandle(this, RelativeLocator.north(), prototype));

handles.addElement (new NullHandle(this, RelativeLocator.southEast()));
handles.addElement (new NullHandle(this, RelativeLocator.southWest()));
handles.addElement (new NullHandle(this, RelativeLocator.northEast()));
handles.addElement (new NullHandle(this, RelativeLocator.northWest()));
return handles;

relative locator indicating that the products do not use inheritance but rather composition
to share implementation details. The fact that there is a mapping between Concrete Product
and WestHandle (as the other directions) that are merely based on a composition seems to
be very debatable and points out the problem that human experts do not have a shared
agreement of valid pattern instances. Truly, an example in which the Concrete Products type
is defined via a composition of a third type (RelativeLocator), wrapped into a fourth type
(ConnectionHandle) stored in a fifth type (Vector) should not be included and considered as
a valid instance of the pattern as only the top level type should be mapped as product. Only
the pattern’s semantic should be considered during detection and not the software developers
intension as the implementation might diverge too far to be considered as instance. This must
not mean that the implementation is flawed by some way, but only that a more conservative
human classification of the instances is desirable. There are many closely related example
(> 300) that share the similar issues and excluding them would improve the recall to over 0.9.

In sum it can be concluded that most patterns can be reliable sampled via heuristic search
in such a way that most or all true role mappings are within the result set of the sampler,
and that the result set has a manageable size. "Manageable size" might be an ambiguous
phrase but appropriate in this situation as the amount of candidates that can be handled
via the detection module (see Chapter 5) largely depends on the computational efficiency
of the detection module itself. The detection module presented in this work handles 50, 000
candidates in 2s on a Graphical Processing Unit (GPU) (in this case, Nvidia GeForce GTX
970), additionally it can also be extended to run on an entire cluster with multiple GPUs.
Truly, the comparison between the combinatorial space is not challenging but most studies
focus on the detection phase thus detailed reports that could be used as comparison are

missing. Furthermore it should be noted that the benchmark with the companion web tool
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Listing 3.2.: Locator handle take a relative position which allows

class WestHandle extends LocatorHandle {
WestHandle (Figure owner) {
super (owner, RelativeLocator.west());
}
public void invokeStep (int x, int y, int anchorX, int anchorY, DrawingView view) {
Rectangle r = owner().displayBox();
owner () .displayBox(
new Point(Math.min(r.x + r.width, x), r.y),
new Point(r.x + r.width, r.y + r.height)
F;
}
}

by Arcelli [6] addresses the problem of human expert agreement by introducing pattern
instance scores. Each expert can comment and provide a relevance score for the found pattern
instances, such that a more reliable corpus of peer-reviewed patterns can be build over the

course of time.
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4. Feature Normalization

Source code is transformed into an ASG, features in form of micro-structures are extracted
and possible candidates from the system sampled such that the detection module can give
a prediction on whether the given candidate is an instance of a pattern or not. The goal
of the feature normalization is, based on the features of the candidate role mappings, to
normalize the inhomogeneous feature vectors/matrices into a matrix of fixed size. This is
needed because micro-structures are not plain scalar values but actually subgraph of a certain
aspect from the system each having their own amount of roles. This process is shown in
Figure 4.1 in which the candidate role mappings (and their respective features) are normalized

into feature maps.

Feature
Normalization

Figure 4.1.: The feature normalization process receives the candidate role mappings and
their features and returns normalized features maps. Feature maps represent
the different sub-graphs of the ASG in a homogeneous form such that inference
methods that need fixed sized input tensors can handle them.

Most machine learning models are designed to take fixed sized vectors as input and return
a fixed sized vector as output (flat methods). To learn from a software system in an end-
to-end fashion, i.e., ASG as input and fixed sized vector as output, models need to be
extended by means that enable them to understand what structure is. Kernel methods, e.g.,
Support Vector Machines [9], can be extended by an appropriate kernel that extracts the
structural information of sub-trees in a directed tree [16]. Neural Networks can be extended to
recursive neural networks that process trees by unfolding the graph structure to an encoding
network where each node in the graph is computed by a feedforward network [18]. Despite
the possibility of these extensions, and unmentioned methods, most direct approaches lack
scalability as computations on generic subgraphs are often computationally intractable.

As mentioned in Chapter 2, micro-structures are named subgraphs that capture a specific
amount of information from the entire graph and help to reduce the amount of subgraphs.
Despite that they solve the problem of scalability, they do not solve the problem that most
models are optimized for fixed sized vector inputs as they still represent graphs. As the
example given in Figure 2.2 shows, the Inheritance and Retrieve MS have different amounts
of roles (2 and 3), and in fact features beyond MS might even have more roles. The goal is
now to find a representation that transforms all these subgraphs into a representation such
that the resulting structure is independent of the amount of roles the features have, without

loosing the original relational information the graphs contain.
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4.1. Feature-Role Normalization

The goal of the normalization, more detailed, is to take n features each having m roles and
map them to k design pattern roles such that the result is a matrix or a vector. Feature-Role
Normalization (FRN) provides one approach to this problem by creating a n X k matrix out
of the features of a candidate mapping. Figure 4.2 gives an overview of the mapping scheme
in which columns are design pattern roles and rows represent micro-structures (features). The
values of the matrix are role ids (id € N) that are globally unique within the entire system,
i.e., no two roles of any pattern have the same values associated with. Zeros represent absent
features meaning that the class mapped to the role does not participate in the micro-structure
or does not have a certain characteristic. Recapitulating the running Strategy example
in combination with Figure 4.2 would result in Compositor (R1 «+— Compositor) being an
Abstract Interface (MS1), that provides a Template Method (MS2) and being a Superclass
(MS3). The ConcreteStrategy (e.g., R2 + TeXCompositor) is a Subclass (MS3) of the
Compositor but does not provide a Template Method or is an Abstract Interface. Context
(R3 + Composition) does not participate in any of the given features thus all values for its
column are zero. The resulting matrix is called feature map as it maps the sub-graphs of the
system (micro-structures), which represent a certain characteristic (feature), onto the roles of
the design pattern. The structure of the feature maps is fixed as their columns are dependent
on the amount of roles the design pattern has, and the rows depend on the features, both
being static at runtime. Sub-graph nodes (MS roles) are represented as values within the
matrix, thus are theoretically infinite, and effectively map the uncertain aspect of the features,

the amount of roles, onto the dynamic axis of the matrix.

R1: Strategy

R2: Concrete Strategy

R3: Context

c D

MSI1 : Abstract Interface

‘ R4: Abstraction ‘

L

MS2: Template Method

‘ R5: Method Provider ‘

L

R2: Concrete Strategy

R1: Strategy
R3: Context

c D

WSl MS1 : Abstract Interface

MS2: Template Method

‘ R6: Superclass

‘ R7: Subclass ‘ MS3: Inheritance

N J

Figure 4.2.: The micro-structures are mapped on one dimension and the design pattern roles
are mapped onto the second dimension. The domain of the matrix are the
identifiers of the roles.
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4.1.1. Issues

Normalizing subgraphs of different shape onto the graph of a pattern might impose certain
restrictions onto the values or the feature map. These restrictions might be mitigated by
changing the mapping scheme, and in fact, some of the presented schemes in Section 4.1.3 do

not suffer of Issue I and II but may introduce their own trade-offs.

Issue 1: Feature Roles Associated to Unrelated Classes

Issue I is related with the noise Feature-Role Normalization might introduce into the feature
maps. The values of the features are very precise in the sense that they are not produced
by measuring a natural phenomenon, but by extracting deterministic properties from an

artificial source (source code). This leads to very high Signal-to-Noise Ratio (SNR)

SNR — Lsignal (4.1)
Proise

in fact, the SNR should be infinity if the MS detectors are implemented without any defects.
Off course this assumes that all features are perfectly uncorrelated and provide useful
information in the context of the detection. An additional problem with sub-graphs as
features is given by the fact that they usually have connections with classes that do not
participate in a given candidate mapping. This causes ghost roles within the matrix, i.e.,
role values within the feature map that might be true on the global system scale, but are
irrelevant for the given candidate mapping. Thus despite the precision of the data, feature
maps can still contain information that is considered to be noise in the context of the role
mapping. Figure 4.3 outlines the problem by removing the subclass relationship between
the classes assigned to the Strategy and the ConcreteStrategy role. Strategy still has a
superclass relationship but to a class that does not participate in the current role mapping
(e.g., SimpleCompositor). The information is correct but is considered to be noise in the
current context as feature maps should focus on the current role mapping, and not on the
environment the entire system provides. Only features that represent a relationship between
multiple DP roles are affected by this problem. Omne simple solution to the problem is to
force the values of a feature to zero, if only one class of the current mapping participates in
it. Figure 4.3 illustrates this solution in which a multivariate feature (Inheritance) does not
provide context related information (left side) thus gets removed from the feature map (right
side). In hindsight this means that instead of knowing that the Strategy class participates
in a inheritance structure in that the others candidate classes do not participate, only the
information is kept that none of the mapped classes are in the same inheritance structure.
This of course comes along with a certain information loss, which must not necessarily mean
that valuable information is thrown away. This is founded on the fact that the additional

ghost values increase the amount of role collisions.

Issue 2: Role Collision

Issue 2 describes the problem that arises if a class participates in multiple instances of the

same feature. Again the problem only is present if the feature relates multiple classes with

59



4.1. FRN CHAPTER 4. FEATURE NORMALIZATION

R2: Concrete Strategy

R3: Context

R2: Concrete Strategy

R3: Context

MS]1 : Abstract Interface

R4: Abstraction

MS2: Template Method

R5: Method Provider

=
&6
g
g
—
o

MS3: Inheritance

R2: Concrete Strategy

MST1 : Abstract Interface

R3: Context

MS1 : Abstract Interface

R4: Abstraction

MS2: Template Method

R5: Method Provider

MS3: Inheritance

R2: Concrete Strategy

R3: Context

MS1 : Abstract Interface

R6: Superclass MS2: Template Method R6: Superclass MS2: Template Method
RT7: Subclass MS3: Inheritance | R6 RT7: Subclass MS3: Inheritance

Figure 4.3.: Micro-structures with multiple roles are only considered if their roles trace at
least to two roles of the current mapping.

each other. Figure 4.4 demonstrates this problem, where the Concrete Strategy is a subclass
of Strategy but also a superclass of the Context. Though maybe not particular meaningful
in the context of the Strategy Pattern, Issue 2 arise quite often and needs to be handled
appropriately. A naive solution would be to duplicate the feature (rows) for each possible
combination of DP role (in this case 23 = 8 row per features), but this inefficiently increases
the height of the feature map with respect to the amount of DP roles. Another way would be
to consider only one relationship as valid and ignoring the others. Of course this would result

in a huge information loss because of the removals.

The implemented solution uses a concept called virtual roles that represent multiple roles
simultaneously. A virtual role is a composition of multiple real roles thus do not really exist in
the context of their respective feature. A composition may only occur within the set of roles a
MS defines, e.g., Superclass/Subclass is a valid virtual role in contrast Superclass/Abstraction
is not. Superclass/Abstraction combines roles of different features thus would be nonsensical
as Superclass cannot occur in the Abstract Interface MS and vice versa. Virtual roles
are means to aggregate multiple instances of the same feature with the cost of losing the
directional information of a relationship. This comes clear if the Inheritance is replaced by
Association in Figure 4.4. For the inheritance case it clear that there is a linear inheritance
structure between the classes mapped to R1, R2 and R3 as no circles are possible. This is not
the case with an association as it would be possible that all three mapped classes relate to
each other. The feature map would then contain the value for the virtual role, depicting the
source and target of an association, in all columns. The directional information is shadowed
by the coarse information a virtual role can represent, thus each role collision causes an
information loss and should be avoided. Ghost values increase the amount of virtual roles as
they sneak in information which is not essential in the current context but might shadow

important directional information.

It is clear that an overwhelming amount of virtual roles would result in a non-negligible
amount of information loss with respect to the relationships between columns. Figure 4.5

shows the prevalence of the top 5 virtual roles among different design patterns. For instance,
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Figure 4.4.: Virtual roles are introduced for micro-structure roles that intersect. They repre-
sent multiple roles at the same time such that only the directional information is
lost.

AssociationSource/AssociationTarget of the Association MS occurs in over 75% percent of
the Singleton instances. This matches the implementation in which a class associates (static
or dynamically) itself and offers a way to access its instance. A special case, that also reveals
the main problem with virtual roles is the Compatible MS which nearly has 100% prevalence
on all patterns. Of course, a class is assignment compatible to itself thus it will always be
source and target at the same time. Not only will be the coefficients in the Compatible row be
the same in every observation (indicating a dead feature), but also compatibility information
between mapped classes is shadowed. Obviously, all prevalence values should hit 100% as
classes are compatible to themselves, nevertheless not every instance of a DP must map every
role. Often abstract roles are merged with their concrete roles e.g., the Decorator is often
merged with the Concrete Decorator when no explicit interface is needed. These missing
mappings cause the entries within the feature map to be 0, thus resulting in a prevalence
of ppecorator = -812 for the Compatible MS within the Decorator DP. It is not surprising
that the unary nature of the Singleton pattern forces a lot of virtual roles. In the case of the
Singleton pattern, virtual roles do even indicate whether a class is a Singleton or not, simply
because of the high correlation between these. Features that capture the messaging behavior
of classes and their respective objects also have a higher prevalence of virtual roles. For
instance an implementation of a graph with nodes that store their connected nodes within
themselves would cause virtual roles in the Association, Delegation and Deputized Delegation
features. These virtual roles occlude valuable direction information within the feature map
as in contrast to the Singleton case because of the multivariate nature of other pattern.
Generally the amount of virtual roles is acceptable and noisy features like Compatible need

to be removed from the feature set.

4.1.2. Properties of the Feature-Role Normalization

Normalization schemes enforce specific properties on the feature maps each influencing the

learnability of the data. Figure 4.6 visualizes one Decorator feature map in which the column
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Prevalence of Top Virtual Roles
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Figure 4.5.: The Compatible MS causes the most virtual roles for obvious reasons - every
class is compatible to itself except if it is missing. Self associations, creations and
delegations do also frequently occur indicated by the Singleton patterns virtual
roles.

row structure becomes clear. Grey spots within the map reflect absent roles and the different
shades of blue the specific role ids. The different intensities of the tiles come from their
respective role ids thus form a gradient along the height. It is possible that two different
micro-structures share a role id, which implies that they have the same roles (with similar
semantics). The order of the columns is fixed but it is possible to train models that are order
independent. The example in the feature map show that all classes mapped to their respective
decorator roles participate in the same inheritance structure. Also there is a Aggregation
relationship between Component and Decorator and a Delegation scheme between the classes.
It is not possible to distinguish the different values via their color intensities because of the

small differences between them within a row. This of course is only a visualization issue.

Sparsity

Sparsity is an important concept used in various different areas, e.g., signal processing,
medical visualization, image processing, machine learning, etc. It represents data in which a
small number of entries contribute the main proportion of the energy. Figure 4.6 illustrates

this concept via a feature map produced by FRN, i.e., only real information causes a response
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Figure 4.6.: The heatmap of a feature map produced by the feature-role normalization.
Features are alphabetically sorted and role ids are integers in increasing order.
Some roles might be reused in multiple patterns if they represent the same
concept.
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within the map all other values are zero. The implication of sparse data is often a high SNR
as information is clearly presented. This is usually not the case in natural phenomenons as
there is always a small amount of background noise caused by the measuring procedure and
the environment. For instance background noise would cause in feature maps gray tiles to be
blue depending on the amount and the intensity of the noise blurring the true information.
Sparsity is enforced by the feature-role normalization, micro-structures and by the fact that
DPD works on artificial data (source code). Table 4.1 presents the sparsity statistics in which
the overall amount of feature maps is given in n, the mean for zero-values and non-zero values
Lz, standard deviation in o, the proportion of non-zero values in the entire dataset and the
Gini Index. The Gini Index, a function Gini : R — [0, 1], is a measure of sparsity complying
to many desirable properties (i.e., Robin Hood, Scaling, Rising Tide, Cloning, Bill Gates,
Babies [23]), expressing perfect equality via a 0 and inequality by 1. First means that all
values within the vector have the same coeflicient and the second, for example, means that
there is one infinite value with infinite zero values.

Gini Index and the Proportion of non-zero values (normalized to 1 as they represent the
abstract concept of an identification number) indicate very sparse feature maps with a mean
of [proportion 40 = 7.42%, paini = .914. The table shows that the sparsity of the feature
maps is rather independent of the pattern, i.e., the participating classes within the different
patterns do not influence the sparsity of the feature maps. The composite pattern is an
interesting case as its standard deviation differs from other the patterns. This is caused by
the Decorator and Concrete Decorator role which are very often merged thus cause a higher
deviation. Except for this peculiarity the sparsity of the features is rather constant among

the patterns.

Table 4.1.: Mean and standard deviation of zero values and non-zero values
within the feature maps along with the proportion and Gini index.

Pattern n =0 M0 0=0,20 Proportionﬂ Gini Index
Adapter 172 18.94 182.05 2.67 10.60 .940
Composite 216 34.51 166.48 6.45 5.82 .888
Decorator 170 35.27 232.72 15.19 7.59 914
Factory Method 462 36.44 231.55 5.25 7.35 915
Singleton 13 1046  56.53 4.34 6.40 902
Template Method 82 15.84 118.15 4.37 8.45 .924
Simplicity

The simplicity of the data directly correlates with its learnability. Intuitively, it is easier to
train a model that learns a direct bijective mapping between inputs and outputs, than to learn
a model that needs to perform a prime factorization before it can access the bijective mapped
prime numbers the inputs are composed out. This example might by exaggerated but points

out the importance of keeping the data simple as possible. When working with natural signals,
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e.g., audio or visual signals, the data is usually transformed into some representation that
capture the relationship of the signals characteristics. For instance audio signals are captured
in terms of amplitude over time, but are converted via the Fast-Fourier Transform [10] into
the spectrum that simplifies the analysis of frequencies. The decision to use micro-structures
already imposes simplicity onto the data as it abstracts not only text but also the ASG in
form of named subgraphs. Feature-Role Normalization transforms these subgraphs into a
feature role independent matrix.

One form of simplicity is given by the sparseness discussed above as only a handful of
subgraphs describe the relationship between the mapped roles. Secondly, the mapping uses
the MS roles as values thus limits the effective range of the coefficients that can occur within
the feature map. The coefficients range form 0 to 161 including all the virtual roles. This
represents a very limited domain on which the models have to be trained compared to signals
drawn from a biological/natural source. Another characteristic is that each row can draw
only from a very limited set of values. For instance the row associated with the Abstract
Interface feature can only contain one specific value. In the case of Inheritance, only two
values within the row are possible namely the identifier for the role Superclass or Subclass.
This is visible in Figure 4.6 where the patterns are sorted and the tiles get darker the further
down they occur but stay constant along the width. These characteristics make feature maps

very simple and predictable.

Flexibility

Flexibility states that the normalization can cope with an increasing amount of features and
breaks up relationships that might impose computational limits. Feature-Role Normalization
enforces that the number of facets or channels needed to encode one observation is independent
of the amount of features. Each observation can be represented with a single feature map
thus only one channel is needed. Different normalizations could result in multiple channels
per observation, just like RGB images are encoded with three channels, and thus limit its
computational tractability.

Furthermore, feature maps growth linear (along one dimension) with the number of features
used in the detection process. Thus, additional features do not compromise the time and
space effort needed to process one feature map. The last outstanding property of flexibility is
that rows and columns of feature maps are order agnostic. This is important as candidate
role mappings do not need to provide perfectly mapped roles but may make mistakes in their
initial role mapping assumption. It does not matter whether the columns are in a specific
order to identify the source and target relationship of a feature because each role has its

dedicate value. This enables a wider variety of inference methods that work on feature maps.

4.1.3. Alternative Mapping Schemes

Several possible mappings schemes (normalization) were considered and the most promising
(FRN) was implemented. Whether a normalization is more appropriate to learn from or not,
can not be determined by theoretical means, especially when using black box methods as

presented in Chapter 5. The situation gets even worse if the machine learning algorithm is

65



4.1. FRN CHAPTER 4. FEATURE NORMALIZATION

gradient based and may run into local minimum increasing the effort of finding a good model.
That said, properties as described in Section 4.1.2 may help finding models that perform well
thus should be perused. Due to time limitations, only one possible normalization scheme was

implemented and tested, and others are subjected for future investigation.

Role-Role Normalization

Very similar to Feature-Role Normalization is the Role-Role Normalization (RRN) in which
the m roles of the n features are mapped onto the k roles of the design pattern. The domain
of the matrix is of binary or categorical nature, depicting whether a certain feature role
holds for a DP role or not. Table 4.2 illustrates the feature map that is produced by RRN.
Role ids are projected onto the rows such that only boolean values are needed in the map.
This avoids role collisions (Issue 2) as each feature role has its own row, however source and
target information is still occluded by intersecting mappings similar to FRN. In this example
Strategy and Context is a Superclass but it is not clear which of the both the Concrete
Strategy’s parent is. This could be encoded into the values, for example each combination
could be represented by an integer starting from 2 to allow booleans: {R1} = 2, {R2} = 3,
{R3} =4, {R1, R2} = 5, etc. Nevertheless this would enforce a column ordering and thus

reduce the flexibility of the resulting feature map.

Table 4.2.: Example of the Role-Role Normalization feature map.

Strategy

Micro-Structure  Role Strategy Concrete Strategy Context
Abstract Interface Abstractor 1 0 0
Iheritance Superclass 1 0 1
Subclass 0 1 1
Sink 0 0 1
Retrieve Source 1 0 0
Retrieved 1 0 0

Another consideration is the resulting size of the feature map as the height of the map is
now dependent on the number of roles the features have. This results in a m x k matrix with
m > n, as opposed to FRN’s n x k matrix. In the case of the currently implement version
of the detection tools this would result in 161 rows per map if all 67 features are included.
Figure 4.7 illustrates the data structural differences between FRN and RRN. Obviously both
are very similar in their basic form and only differ by their actual content and height. The
left data structure contains multitudes of values where the middle only has boolean or a very
limited set of categorical coefficients. The middle data structure has roles along its height
where the left has features. Additionally they differ in their actual height not visualized
within this figure.
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Feature-Channel Normalization

Feature-Channel Normalization (FCN) creates for each of the n features a k x k matrix,
where k is the number of DP roles. The idea is similar to the work of Tsantalis et al. [51] in
which sub-graphs of the ASG are represented via their adjacency matrix. Each feature (e.g.,
aggregation, inheritance, ...) forms its own k x k adjacency matrix and functions as channel
within a feature map (similar to red, green, blue within an rgb-image). Thus, feature maps
produced by FCN are volumes as in contrast to the feature maps produced by FRN and
RRN. The data structure is given in Figure 4.7c in which the basic difference between the
normalizations can be seen. Columns and rows represent the design pattern roles thus values
within the matrix are always mirrored. The depth of the volume represents the features,
i.e., the micro-structures that are used. Coefficients within the channels represent relational
directions between DP roles, i.e, the edges within the ASG. A positive value is a Source to
Target, and negative the inverse Target to Source relationship.

Table 4.3 illustrates an example of the Feature-Channel Normalization in which three
channels are given: Aggregation, Inheritance and the Retrieve channel. A channel is read
from row to column such that Concrete Strategy aggregates Strategy and Strategy is the
Superclass of Concrete Strategy (conversely: Concrete Strategy is the Subclass of Strategy).
The main advantage of this normalization is that the source/target information is preserved
even if there are intersections between MS roles. This is paid with an increased space demand
as FRN needs n x k coefficients, as in contrast to FCN with k x k& x n coefficients. Furthermore,
FCN can not freely reorder columns independent from rows as it would break the encoded
target source information. The fact that FCN produces volumes means that the used inference
method must be able to process these, which limits the normalization’s applicability. Simple
down-projection of the volume, such that a greater variety of inference methods can handle
the data, might destroy the information within the feature map. Note that this needs to be
verified in a series of experiments, but the expectation is that the information represented
by the volumes structure and its values cannot be preserved by the projection. FCN can
be seen as the generalized version of FRN and RRN as it preserves all of the information
extracted by micro-structures. FRN and RRN squashes the data into a matrix which causes
the limitations with respect to role intersections within the data. FCN spans a volume such

that intersections can be captured on an additional dimension.
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Table 4.3.: Example of the Feature-Channel Normalization. Aggregation,

Inheritance and Abstract Interface are the features that build
up the tree channels of the feature map. Channels are square
matrices that contain source/target information of the MS
roles. For example Context aggregates a strategy or Strategy
is the super class of Concrete Strategy. The value magnitude
is the edge identification where 1 within Channel 1 would
describe the Aggregator/Aggregate edge, or the Abstract
Interface within Channel 3.
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Figure 4.7.: Each feature normalization results in a specific structure and content of the
feature map. FRN and RRN encode information in a flat structure incorporating
information loss. FCN uses a third dimension to preserve the data but has higher

space demands.
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Design Pattern
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Figure 5.1.: The feature extraction process uses the feature maps and convolves over them.
This results into a likelihood that the given map is of a certain pattern and
ultimately to the boolean decision whether it is accepted or not.

The detection step takes the feature maps of the candidate role mappings and decides
whether they are a valid instance of a specific pattern or not (Figure 5.1). This is done via a
machine learning algorithm that trains a model which understands the inherent notions of

the respective feature maps.

5.1. Machine Learning in a Nutshell

There are many problems that are closely related in their basic nature and some of these
problems may be solved by exact deductive approaches. A deductive approach uses a system
of formulas, axioms and rules of inference to find the exact solution to a class of problems
(e.g., simple maximization problem). This implies that the system contains all the information
such that the rules can be applied in a mechanical fashion. Nonetheless most real world
problems cannot be fully specified or their computation is too expensive such that inductive
approximative approaches are the only remaining option. Machine learning is an inductive
approach that tries to build models/knowledge from previously observed data with the two
main goals of getting insight into the data, and being able to make predictions about it.
Simply speaking, machine learning is about learning from data.

Machine learning is split into to two categories: supervised and unsupervised methods.
Supervised methods try to find the relationship between the input X and the output Y,
where both are known beforehand. Unsupervised methods try to identify structural properties
in X since no output Y is known beforehand. Classical tasks of supervised methods are
classification and regression, where the first outputs class labels and the second numerical
values. The predominate goal is to predict an output value for a given input value, thus DPD
is a typical example for a classification task. Clustering, projection, and density estimation
are the main tasks of unsupervised methods. The goals of these methods are usually to
transform data or being able to reproduce it.

Tasks are executed by so called models which represent the specific relationship /representation

with respect to the problem. For example, a classification problem has inputs and desires
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a certain output. Models return these outputs based on their learned representations. The
learned representations can be of various forms, e.g., graphical, mathematical, conditional,
or simply a set of coefficients. Parameters are an actual instance of a representation thus a
concrete model. A learning algorithm computes the set of parameters that provide the best
results for the current problem, hence it builds the model. Learning algorithms posses their
own parameters called hyper-parameters which enable the developer to tweak the algorithm
to the specific task. The resulting models may differ with respect to their actual parameters
even if multiple runs of the learning algorithm have the same hyper-parameters. This is
caused by deliberately introducing randomness within the learning process or non-unique
optimal solutions for the parameters. The set of all possible models a learning algorithm can
generate forms a model class. Model selection/training is the process of finding the model
within a model class that fits the data best.

Data | <— g E0

'

—> | Preprocessing | <———

Prior Knowledge | m CFeature Selection) -~

—>( Model Selection )=<=—

Model Training )<——

CModel Evaluation) e
Solution

Figure 5.2.: The data analysis workflow is an iterative approach that is executed until a model
is accepted (final model). The final model provides an approximate solution
to the problem represented by its data. First three steps prepare the data or
the model for the actual training and incorporate usually some sort of prior

knowledge. Last two steps train and evaluate the models performance with
respect to the previously trained models.

Figure 5.2 shows the process of building a model for a specific problem. Given is a classical
machine learning task/problem as mentioned above and the data that is related to it. Result
is the final model that is capable of providing the approximate solution. Steps in between
prepare the data or the model and sometimes have prior (domain) knowledge as prerequisite

in order to be executed efficiently. It is very common that there are many iterations of these
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steps until an appropriate model is found. The final model rarely concludes the problem and

ongoing repetition of these steps help to improve the overall performance of the models.

5.1.1. Data

The most important entity in the entire data analysis workflow is the data itself. It contains
the needed ingredients to solve a specific problem thus the quality of it is crucial. This
means data should correlate with the task and be free of noise and redundancies. The
data approximates a process of the real world hence the amount is essential if the model
should reflect it in an appropriate way. It is hard to tell how much data is needed as this
depends on the complexity of the real world process that is modeled. A set 4 observations is
enough to build a model that mimics the logical XOR, gate, but how much data is needed to
detect handwritten digits from images? No concrete answer can be given for this question as
machine learning is of inductive nature but a rule of thumb may be "more is better'. Another
important point is that real world data is often imbalanced meaning that the class labels do
not describe a uniform distribution. Balancing the data bares the risk of building models
that do not learn relationships of the real world but an augmented view of it. This might
be ok during the develop phase but becomes a problem as soon as it is used in a real-world

scenario. Therefore additional care has to taken with imbalanced datasets.

Table 5.1.: Simple "dog" dataset with three features (Color, Weight, Length) and the targets
Breed (classification) and Price (regression) of 5 observations.

Nr.  Color Weight[kg] Length[cm] Breed  Price
0 Black 45 88 Labrador 845.45
1 Brown 40 80 Labrador 933.90
2 Brown 60 100 | German Shepherd 999.45
3 Black 20 28 | Miniature Poodle 500.75
4 White 15 33 Terrier 600.21

In the simplest case the dataset is a table where each row depicts an observation and
each column represents a feature (or variable). Table 5.1 illustrates a sample dataset for
dogs in which Color, Weight and Length are the features, and Breed (classification) and
Price (regression) are the targets. A row without its labels is called feature vector and is
usually the input to a model, e.g., x; = (Black, 45, 88). The output is one value representing
the target/label of the feature vector, e.g., y1 = Labrador (classification) or y; = 845.45
(regression). Labrador, German Shepherd, Miniature Poodle and Terrier are called class
labels in the context of classification or simply class. Usually only one target column is
given as it is either a classification or regression task. The example in Table 5.1 contains
two targets for illustrative purposes. The labels are obtained through human experts or are
product of some automated process. This simple example is a two dimensional dataset but
for many problems multidimensional data is more appropriate. Images and time series are

usually represented in higher dimensional datasets as the "flattened" version may destroy
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essential information stored in the local correlations within the dimensions. For example an
apple within a image is easy recognizable by humans as the different pixels "look" like an
apple in real world from one specific perspective. This definitely gets harder if the image
(which is nothing but a matrix) is flattened to a vector. It is most likely that humans would
not be possible to identify the object within the image represented as vector because of the
missing local correlations between the pixels. This information loss also affects the learning

algorithm, thus it is important to keep the data in its "natural" form if possible.

5.1.2. Preprocessing

The first step is usually to preprocess the data which includes reshaping, normalizing,
projecting, sampling etc, and often multiple preprocessing steps are applied in conjunction.
This is needed because the data might combine multiple different datasets and features with
incomparable values ranges, or it is given in a hierarchical form that needs to be flattened
and so forth. Reshaping transforms the shape of a dataset into a new one that is more
appropriate for a given model class. Normalization adjusts the feature values such that they
have a common scale. Most prominent methods are the standard score (Equation 5.1) and
feature scaling (Equation 5.2)

X" = X - ’u, z-score (5.1)

g
* (X - szn)(b - (1)
X' =a+ X maz _ X min ’

feature scaling (5.2)

nonetheless there are also other methods.

An example application for normalization is given in Table 5.1 in which Weight and Length
have different units thus are not comparable. Bringing these onto the same scale enables
models to reason about them equally, i.e., models often interpret the magnitude of features
thus may get biased towards dominating values. Projections transform the data from one
representation into a target representation. These transformations must not be perfect in
the sense that all data is retained during the process, thus projections that compress the
data are possible and needed. An application for a projection is given in Table 5.1 in which
the labels (Black, Brown, White) must be mapped to numbers in order to be processed by
most learning algorithms. Another application of projections is dimensionality reduction for
visualization or compression purposes. A specific algorithm to down-project high dimensional
data into a space of smaller dimension is the Principle Component Analysis (PCA) [43]. The
projection uses the variance within the data to build up a smaller dimensional space thus
retaining most of the information. Sampling is the processes of retrieving a small subset of
the original dataset such that the size becomes more manageable. Additionally sampling
is used to balance the distribution of the labels as unbalanced datasets are very common
in many real-world applications. For example the distribution of dog breed in the example
is not balanced as Labrador is more frequent than order breeds. This of course is part of
the problem the model tries to learn, nevertheless extreme imbalance may cause the model
to neglect all other classes. Imagine a dataset of 100 dog observations in which exclusively

Labradors are present except for the three German Shepherd, Miniature Poodle and Terrier
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observations given in Table 5.1. Building a model with this data would cause it probably
to neglected the three minority classes therefore always predicting majority class Labrador.
The model would reach 97% accuracy by doing so thus decisively has a good performance.
Sampling helps to mitigate the problem by modulating the label distribution. This must
be done with caution as the model learns a different distribution and not the possible "real

world" case.

5.1.3. Feature Selection

Retrieving the data involves probing a certain environment and often this is done in a
redundant fashion because of external limitation or other non-controllable reasons. For
example the signals from two microphones, used to record a band, will highly correlate as
no perfect isolation of the different audio sources (singer, guitarist, drummer, ...) can be
guaranteed. Feature selection only retains features within a dataset that contain viable
information, i.e., is unique and contributes to the entire information content. Thus the
process selects variables with the most information content, removes redundant ones and
ranks them according to some importance metric. This can be done manually if domain
knowledge is available or via algorithms that use statistical methods or some auxiliary
predictor. The main problem with feature selection is that it is seldom known in advance
which features are relevant, irrelevant or even misleading. It is a hard problem to pick a
handful of essential variables from hundreds or even thousands of features without perfect
knowledge about their relationships and interactions. Removing too many features might
exclude important information, adding to many increases the overall noise and makes it hard
to build a stable model because of the large amount of information. Additionally, linear and
non linear dependencies between features need to be considered as they might be the key to
solve the initial problem. For example the task is to build a model that predicts the area of a
rectangle. Features might be: width, height, rotation, absolute position, etc. Obviously the
only features needed for the task are width and height and all others can be considered as
noise in the task’s context. Both features are meaningless if they are inspected isolated but
by considering the multiplicative relationship between them, it becomes clear that they are
the only thing needed to solve the task.

There are various types of feature selection methods which can be categorized into: filter
methods, wrapper methods, feature selection during learning and feature selection after
learning. Filter methods select or rank features according to a statistical criteria without
making use of any prediction method. Statistical criteria include the Preason’s correlation
coefficient, the Fisher criterion or the t-statistics, which reason about the correlation between
features and output, and use a threshold to decide whether a feature is important or not [20].
Feature selection on its own can be viewed as machine learning task in which we try to find
the best possible combination of features for the given labels. Wrapper methods make use of
this by using any auxiliary machine learning algorithm to train models on different subsets of
features. The model with the best performance defines the subset of features that is selected.
Main problem is the combinatorial explosion of feature subsets that need to be considered in

an exhaustive search. Forward selection and backward selection are methods that iteratively
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add or remove features form the current used feature set with respect to the performance of
the previously trained models. The last two types of feature selection methods use either
rule-based predictors that inherently choose the best set of features to make their prediction,
or methods that can be augmented with some sort of regularization that gears the predictor

to use as few relevant features as possible.

5.1.4. Model Class Selection

There are many different machine learning algorithms each having their own unique properties,
advantages and disadvantages. These generic learning algorithms are then used to build models
tailored to specific tasks. Hyper-parameters help these generic models to adapt to different
situation and thus improve (if correctly used) the resulting model’s performance. In general
there are two types of models, parametric and ndifferenton-parametric models. Parametric
models store the learned information in form of parameters that are used, depending on the
model class, during prediction. Non-parametric models solely uses the provided training
dataset (thus the observation within the dataset are the parameters) to make their predictions.
The advantage of dedicated parameters is that the model size is usually magnitudes smaller
than in non-parametric models that always need the full training set in order to operate
correctly. Model class selection limits the possible search space of models tremendously as

each model class usually only has a small set of hyper-parameter that need to be figured out.

Nearest Neighbor

The most prominent example for a non-parametric classification model is the k-Nearest
Neighbor algorithm (kNN) [35]. It uses the simple concept of counting and the spacial locality
of the observations to make predictions. The hyper-parameter k& defines how many neighbors
should be considered to evaluate the prediction label. Consider the dog example with only
two features Weight and Length. These can be represented as a point on a plane where
observations with the same label would form clusters (because of their similar values), and
some clusters may even overlap (e.g., big dog breed). Given now a new observation (new
point) for which no label exists, kNN simply places the observation into this plane and uses
the most prominent class of the k& nearest neighbors as prediction result. A distance function
(e.g., euclidean distance) is used to evaluate what the "nearest" neighbors are but despite
that no additional information is needed except for the initial training set. This principle can
be extended to the multidimensional case, nevertheless the more dimensions are used, the
more observations are needed to fill the space appropriately. The obvious disadvantage of
non-parametric models is that they need the training set at prediction time which increases

space and time effort for this model class.

Decision Trees

A Decision tree [29] is a very intuitive parametric model where the parameters can actually
be decoded by humans as opposed to many other models. The model is a tree where each

non-leaf node is a "questions" directed to a specific feature of the observation, and each
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leaf node corresponds to a final prediction. Thus decision trees partition the training data
in a hierarchal fashion cutting the space (in the 2D dog example the plain) into segments
that correspond to a certain class. The learning algorithm searches for the feature that
provides the maximum gain of information and uses the feature’s domain as subtrees. Gain of
information is typically measured via Information Gain [35] or Gini Impurity (Gain) [50] and
they provide a measure on how much information is encoded into a feature with respect to
the labels. Consider now the dog example with only two features Weight and Color. Weight
could be the root node with the decision Weight < 30 resulting in two subtrees each splitting
the remaining feature Color. Color is a categorical feature with four different values thus
resulting in four leaf nodes each having a target label associated. The most frequent label is
chosen if multiple labels match the the criteria imposed by the trees path. For example the
feature vector (Brown, 35) would result into an ambiguous leaf node in which Labrador and
German Shepherd would fit. In this case the model would return Labrador since it is the
most probable class in this situation (with a probability of .66 ). Real world applications

usually use multiple decision trees at the same time which is called Random Forest.

Support Vector Machines

Support Vector Machines (SVMs) [9] are based on the idea of finding a linear classification
border that maximizes the margin between positive and negative samples. Inherently this
means the SVMs are basically restricted to binary classification which can be circumvented
by training multiple SVMs. Let the labels in Table 5.1 be big and small depending whether
the dog reaches the threshold Weight < 30kg instead of actual breed names. Again let the
observations be points on a plane (consider only Weight and Length), SVMs then compute the
line between the points (decision boundary), labeled as big and small, such that the distance
between the nearest points (support vectors) of the classes big and small is maximized. Simply
speaking, SVMs compute the line located in the middle between the nearest points of the
two classes big and small (they are not allowed to overlap). This is solved by transforming
the original margin maximization problem into a convex quadratic optimization problem
which then can be solved by using Lagrange multipliers. To avoid overlapping the entire
computation is executed in a higher dimensional space in which overlaps are very unlikely.
SVMs are based on complex mathematical concepts as in contrast to the previous two models.
Nonetheless they offer very good performance on rather small datasets making them an

interesting choice for many applications.

Neural Networks

Neural networks are build up by many small units called perceptrons that are closely related
to logistic regressors. The idea of a unit is that it gets numeric values as input and returns a
specific output value that has some relationship to the inputs. Figure 5.3 illustrates such a
unit in which observation #0 from Table 5.1 is the input, and some arbitrary value is the
output representing the price estimate. Each input feature from x has a weight w assigned to
it which can be seen as an importance measure. Length is the most important feature in this

example as it has the highest weight, thus the longer the dog the higher its price estimate. f
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is a specific function of the weighted sum of inputs and enables the unit to learn nonlinear
relationships. These functions are called activation or transfer functions where for example

the Sigmoid function is defined by

_ 1
1l 4e 7

o(z)

(5.3)

The unit would be a simple linear combination without the activation function, thus only

able to learn linear relationships which is very limit. The full specified unit is given by

f(z) =o(w-x), (5.4)

where the (-) is the inner product between the input vector and the weight vector.

Input

Color
Output
Weight p.rice
estimate
Length

Figure 5.3.: Color, Weight and Length are the input features each weighted by a certain
values and combined by f which returns the predicted price estimation.

Having only one model that provides an estimate price is probably not be enough as
it is biased towards longer specimens. The next step would be to define multiple models
(weights sets) each biased towards a certain feature combination, i.e., different estimation
scenarios. Figure 5.4 shows 4 different weight sets each having different preferences of dog
features. Model 4 will consider heavy dogs as valuable, where model 2 is rather balanced in
its assumption. Off course the models are only valid in their specific scenario and will utterly
fail in others.

The solution is to combine all specialized models into one unified model that captures
the knowledge of all four. Figure 5.5 illustrates the unified regressors in which the previous
models are present in the hidden layer. This is called a dense network as every unit form
one layer is connected to the units of the adjacent layers. All of the outputs provided by
fo(x), fi(x),..., fs(x), are combined by the output layer which again applies f to each of
the intermediate estimations. Weights for the output layer might reflect how frequent each
situation, thus each model was needed and weighting these frequencies with the intermediate
estimates of the hidden layers results into the final price estimate.

The current model is capable of predicting the estimate price for a given dog based on

its weight, length and color. It does this by repeatedly multiplying the inputs of a unit u,
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price
estimate

Model 2 Model 3

price

estimate

Figure 5.4.: Four linear models each having its own weight set producing different price
estimation for the same input.

with its weights w, and subjects the result to an activation function f. The result of f is
again the input of the follow up unit. This structure (Figure 5.5) is already a proper neural
network and these multiplication steps can be written in a more compact way. Let W}, be
the weights of all units on layer k& combined into a matrix and xj its input vector, then
l, = (W} - xy) is the output of layer k. Now the question remains how these weights can be
found automatically as defining them manually is of course not feasible. For now imagine
that the weights are handled manually and that the model provides price predictions each
time a specimen is given. The client that needs these predictions provides on a regular basis
feedback to the values of the model. For example, whether they are too high or too low with
respect to the market (Price in Table 5.1) or whether the market follows a certain trend
(market needs Terriers). The most natural action would be to adapt the weights based on
the feedback in a reverse fashion. First it would be advantageous to change the last layer
that reflects how often the different scenarios occur as this reflects the current mood of the
market. In the next step all the feature considerations and their price association would
be changed. This basic concept is captured in the back-propagation algorithm [27] in which
a loss or cost-function provides the feedback which is then applied in a backward fashion
to the network. The cost function L(z(),3®)) measures the difference between the label

and prediction of observation 7 (e.g., mean squared error, cross-entropy, Kullback-Leibler
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Figure 5.5.: The combination of all four model into a neural network. The hidden layer
contains the weight sets of the different four models which are than combined by
another weight set aggregated by fs.

divergence, etc). This is done by using cost functions along with activation functions that are

differentiable such that a minimization problem can be applied. Weights are then updated by

oL
W—W-—-—a— 5.5
in which the previous weight is modulated by the partial derivative of the loss with respect

to the weights multiplied by the learning rate « (hyper-parameter).

This iterative approach is an instance of the gradient descent method in which a local
minima provides a sub-optimal solution. The learning algorithm might converge to "good" or
"bad" local minima for the model thus weights are usually initialized randomly in conjunction
with multiple experiments. The example from above can be generalized to arbitrary problems
that have a fixed sized vector as input and return either a label or a value. Neural networks
are very versatile as their expressive power can be "engineered" via its architecture which

resulted in numerous extensions to the basic concepts.

Two very simple extensions to neural networks that contributed to the advent of deep
learning are the Dropout regularization and the Relu activation. The biggest problem with
the sigmoid (or tanh) activation is that the more layers a network has, the less learning
progress is done in layers closer to the input. This problem is called "vanishing gradients"
capturing the issue that successive gradient computation and propagation during the learning
phase reduces the actual weight adaption values close to 0. In other words, the value with
which the weights are modulate in Equation 5.5 is getting very small (close to 0) for layers
far away from the output. Sigmoid (S shape between 0 and 1) functions have at maximum a
derivative of max o’(x) = .25 thus propagating these values will reduce the feedback at least
to a quarter of :icts initial value. The relu function defined by relu(x) = maxz(0,z) circumvents

this problem as its gradient is either 0 or 1 (for relu’(0) = 0).
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Dropout [48] on the other hand helps the network to learn general relationships between the
input and the output instead of learning the input and its output by "heart". This problem is
called overfitting and states that a given model learned the notions of the training set, instead
of the relationships between the input and the output. Overfitting models are very good in
predicting values on the training set but perform poorly with new data. Neural networks are
very prone for overfitting and dropout helps to regularize them. Dropout "removes' randomly
nodes during training from the network, i.e., for each sample a different set of nodes are
deactivated. This has the effect that the different nodes cannot rely on each other during
training thus need to learn something general of the data. After training, all of these nodes

work in conjunction together where each node represents something unique.

Convolutional Neural Networks

A Convolutional Neural Network (CNN) [27] extends the basic notions from neural networks
and introduces two new layer types. Again CNNs incorporate units with learnable weights
(and biases) that are combined via the dot product with the inputs and optionally apply
a non-linearity as activation function. Still the entire network is trained by computing the
gradients thus represents a single differentiable function that ranges from the input layer
to the output layer. And still training is done via gradient descent. The main difference
is in their structure as CNNs where developed to handle volumes, e.g., images (with color
channels). Image processing is not scalable with normal dense layers as the number of
parameters (weights) needed to fully connect even one unit is fairly high. An image with
32 x 32 x 3 (width x height x channels) pixels would need 32 - 32 - 3 = 3072 weights on
one input unit. CNNs solve the problem by exposing the fact that the data is organized
on multiple dimensions thus efficiently make use of the spatial correlations in it. Instead
of destroying the volumetric information by feeding the data as one big vector, CNN units

extract the information from the volume directly in form of small patches.

Convolution layers consist of learnable filters where every filter captures a small proportion
of the width and height of the image and the entire range of its depth (all channels). An
example filter is given in Figure 5.6 where the filter has a 3 x 3 x 1 shape covering 3 pixels
along the width and height, and 1 pixels in the depth. These filters are slided (convolved)
across the width and height of the image during the forward path (prediction) such that they
cover any position on the image. Dot products are computed at every position during the
convolution between the entries of the filter and the input. The result of the convolution is,
instead of a single activation value, a 2-dimensional activation map containing the responses
of the filter at any position. Usually a convolutional layer will consist of multiple filters and
the resulting activation maps are stacked together to form the new volume for the next layer.
Each filter is randomly initialized and it learns to detect one specific object (colors, shapes,
faces, etc.) over the course of training. This object can be detected anywhere in the image
because of the convolutions. Figure 5.6 shows a 3 x 3 filter that is applied to a patch of the
input. Basically it computes the dot product between filter and patch and divides the result

by the amount of pixels that are involved.
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Figure 5.6.: The filter is slided across the input map producing one value on the activation
map.

A hyper-parameter of the this layer is the receptive field that measures the extend of pixels
it "sees" during the convolution. It defines the width and height shape of the filter but not the
depth as the depth is always fully exposed. The main reason for this is weight sharing, which
states that all neurons of an image slices (e.g., channels of an rgb image) share the same
weights. This is a sensible assumption because an object located at position (x, y) is usually
also important at position (x1, y1). Not only does weight sharing help to save parameters but
also forces the network to learn sensible representations thus mitigates overfitting (discussed

in the next section).

Additional to the convolutional layer CNNs also introduce pooling layers that reduce the
spatial size of the representation therefore the overall amount of parameters. Most used
pooling layer is the MAX layer that applies the maximum function, but other operations
are possible (e.g., mean, ...). Pooling layers convolute over the input and execute the
pooling operation on the receptive field similar to the normal convolution filters. A max
layer therefore retains only the biggest value in its current receptive field, thus a 2 x 2 max
layer will discard 75% of the activates (moving in strides of 2). Figure 5.7 illustrates the
max pooling operation where the left side illustrates the input. Each color represents one
receptive field of the pooling layer which moves in strides of 2 hence does not overlap. The

result is given on the right side in which only one value is retain for each pooling operation.

Despite their wide use of application in CNNs, current trends [47] suggest that pooling
layers should be replaced by normal convolution layers using different strides to reduce the
amount of parameters. As for now, pooling layers are a useful ingredient in many CNNs and

help to keep the amount of parameters under control.
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Figure 5.7.: Max pooling subsamples the input by retaining only the maximum activated
value.

Note that this was only a very brief overview of CNNs and the fast paced research in this
field adds frequently notable details to it. CNNs are the main reason for the new machine
learning and Artificial Intelligence (AI) trends as they are applicable in many situation
yielding outperforming results in nearly every category. They are the core component in

many computer vision, natural language processing, video analysis, and medical tasks.

5.1.5. Model Training

Model training is the process of executing the learning algorithm on the data. This phase is
usually tightly interleaved with the model evaluation, as finding the model that performs
the task best involves generally hundreds of models. This is due to the hyper-parameters a
learning algorithm has, the different preprocess operations that can be applied and model
classes that can be selected. Its seldom clear which combination of these yield the best
performance thus training and evaluation is usually automated. This is called hyper-parameter
optimization in which potential combinations of settings are executed and ranked based on

some objective function.

There are different ways to train models and a naive approach would be to use all the
available data for training, and also use it to evaluate it. Obviously this approach lacks one
important ingredient - generalization performance. The motivation for training a predictive
model is that it can be used in situations where we have data that has no label assign
to it. For the dog example this would mean that we want to use the model in future to
automatically evaluate the dog breed and price based on the features and without human
intervention. Off course using the data to train and evaluate the model does provide any
information on how well it will perform in situations with new unseen data. There are several
different training schemes that help assessing the generalization performance, each having

their own advantages and disadvantages.
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Re-substitution Validation

The re-substitution validation uses the training set as test set and provides too optimistic
results. Despite that it is not evaluating the generalization performance, re-substitution can
still carry some value. Computing the re-substitution performance is useful for selecting
model classes, features and data preprocessing steps. The idea is that the model should
perform extreme good on the test set which is the same as the training set. This provides
information about the complexity of the data relative to the expressiveness (complexity)
of the model. If the model does not reach an almost perfect score during re-substitution
validation then it is unlikely that it can generalize the provided data good. This means that

either features, preprocessing step or model class must be changed.

Holdout Validation

A more robust way to evaluate the performance is given via the holdout validation or sample
estimation [25]. Figure 5.8 illustrates the process of the holdout validation in which the data
is partitioned into two mutually exclusive subsets called training set and test set. The test
set is usually comprised of 1/3 of the data and the training set with the remaining 2/3. The
learning algorithm uses the training data along with its hyper-parameters to build a model.
This model is then evaluated by using the test data and comparing the prediction labels with
the test labels.

Hyper-parameters

Training Data
> —>( Learning Algorithm
Training Labels

Data

Labels

Test Data —|—> -

Test Labels l

Prediction

R
!

Performance

Figure 5.8.: The entire data is split into training and test data with their respective labels.
Training data is used to derive the parameters of the model via a learning
algorithms that has its own (hyper) parameters. After training the test data is
used to produce predictions that are compared with the true labels resulting the
model’s performance.
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The approach uses unseen data to evaluate the performance of the model thus reconstructs
the situation in which the model will be later used. Nonetheless the approach leads to models
that are biased towards the test data set. This is because the model developer will adapt the
hyper-parameters according to the test set performance thus tailors the model exclusively to
it. This off course leads to a bad generalization performance if the test data is not a good

approximate for the real data distribution.

Cross Validation

Cross-validation takes the idea of the holdout validation one step further by partitioning
the data randomly into k& mutually exclusive subsets (folds). It then applies k holdout
validations in which the test set is one fold, and the remaining folds comprise the training
data. This results into k£ models each validated via a different proportion of the entire data.
The performance is then the average of all models giving an estimate on how well the model
would generalize on the data. The estimate is better than the simple holdout-validation as
it mitigates the bias towards a small fraction of the data, nonetheless it still inherits some
issues. One issue is that the folds are randomly partitioned which results into a different label
distribution than in the original dataset. Stratified cross-validation mitigates this problem
by arranging the folds such that the original distribution is preserved. Another issues is the
pessimistic bias for small k’s which is caused by the big test-set sizes. Models do not reach
their full potential if data is withheld for test purposes. The pessimistic bias captures this
concept by stating that the model performance is estimate too low because of the withheld
data. This causes a dilemma in which the entire dataset is used to reduce the pessimistic bias
but in hindsight does not represent the generalization performance. The dilemma cannot be
avoided in real-world applications but increased awareness of it helps making better model

selection decisions.

5.1.6. Model Evaluation

The only thing left after shaping the data, selecting the features and the model class, training
concrete models and measuring their performance, is evaluating their performance. This
process looks deceivingly easy at the beginning but model evaluation inherits many pitfalls
invalidating the assessed results. Model evaluation compares and provides means to decide
whether given models perform good or bad in future scenarios. These scenarios will most likely
include observations that the models have not seen during training thus brings the learned
relationships to test. Simply speaking, model evaluation assess the predictive performance of
models on unseen data.

As already mention evaluation and training goes hand in hand and some of the issues with
the performance assessment can be avoided by the training procedure (e.g., cross-validation).
Nonetheless there are some issues related with the data itself and the performance measures
used during training. One assumption to the data that need to hold is: data is independent
and identically distributed (i.i.d) [22]. This assumption states that the samples are drawn
from the same probability distribution and are statistically independent from each other.

Coming back to the dog example, identically distributed means that the procedure on

85



5.1. MACHINE LEARNING CHAPTER 5. DESIGN PATTERN DETECTION

how the length of dogs is measured must be the same for all specimens, otherwise the samples
could represent a different distribution. Mixing up samples that measure the dogs length
by either including its tail or not obviously breaks this assumption. Independent implies
that changing one sample does not effect any other sample. This assumption does not hold
for time series as objects over time are depended. In the case of design pattern detection
this means that all unique mappings are independent but all mappings within the same
equivalence class are not. Changing some properties on the abstraction definitely influences
other samples in the same unique mapping. This is an important point to consider during
the evaluation as it alters the predictive performance of models in a way that they are either
too optimistic or pessimistic (usually too optimistic). Imaging a design pattern detector that
is trained via cross-validation on one unique mapping that contains 1000 role mappings. The
results will probably be extreme good but way to optimistic as each of the samples in the
training or validation set share the same abstraction. It is easy to overlook such dependencies

without any prior knowledge of the domain.

Measures of Performance

A performance measure is a metric capturing how different the predictions are from the true
labels. There are measures for regression and measures for classification where this work
will focus on the last. Additionally only binary classification measures are considered as
multiclass scenarios are not relevant in the context of this work.

Every measure is build on the concept of counting the amount of labels the classifier was
able to predict or not. Therefore we define L as positive labels and L as negative labels, and

additionally

True Positive (TP) as all positives that were predicted as positive,
False Negative (FN) as all positives that were predicted as negative,
False Positive (FP) as all negatives that were predicted as positive and

True Negative (TN) as all negatives that were predicted as negative.

The confusion matrix captures these notions and help to evaluate the models performance
on a class level. Values within the matrix count how many samples fall into the different
categories, thus might not be as intuitive as a single performance measure. Nonetheless
confusion matrices are robust against metric issues i.e., too optimistic performance evaluation

for imbalanced datasets as the prediction behavior of the model can be directly evaluated.

Table 5.2.: confusion matrix

Predictions

L L

L TP FN
Labels .

L FP TN
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Accuracy is the number of correctly classified items, i.e.

TP+ TN
A = . .
ce TP+ FN+FP+TN (56)
Precision is the proportion of predicted positive example that were correct, i.e.,
TP
PREC = ————. .
REC TP+ FP (5:7)
True Positive Rate (Recall) is the proportion of correctly identified positives, i.e.,
TP
TPR= ————. .
i TP+ FN (5:8)
True Negative Rate is the proportion of correctly identified negatives, i.e.,
TN
TNR= —————. .
i FP+TN (5.9)

False Positive Rate is the proportion of negative examples that were incorrectly classified

as positives, i.e.,

rpP

FPR= —————.
R FP+TN

(5.10)

False Negative Rate is the proportion of positive examples that were incorrectly classified

as negatives, i.e.,

FN

FNR= ——.
R TP+ FN

(5.11)

Matthews Correlation Coefficient is the measure of non-randomness of classification defined
as normalized determinant of the confusion matrix, i.e.,
TP-TN —FP.-FN

Mee= V(TP +FP)(TP + FN)(TN + FP)(TN + FN)’ (5.12)

F-score is the harmonic mean of precision and recall, i.e.,

_ PREC-TPR
~ PREC +TPR’

F (5.13)

The accuracy is the most common measure of performance and reflects the number of
correctly classified items. It is a percentage value where 0 states that the predictions were not
accurate and 1 states that the predictions were perfectly accurate. The biggest problem with
accuracy is that it returns a wrong performance value for classifiers trained on imbalanced
datasets. If the dataset has 99% negative examples then the classifier will probably also have
.99 accuracy as it will always predict the majority class (most frequent class label). The main
problem is that the model will not have any understanding of the positive class as it is best
to simply always predict the negative class. This can become a serious problem, for example
if a self driving car needs to perform an emergency stop. Of course this situation is not as

frequent than all other driving situations nonetheless because of its importance it should

87



5.1. MACHINE LEARNING CHAPTER 5. DESIGN PATTERN DETECTION

be definitely be considered by the model. DPD also work on highly skewed datasets as the
amount of classes matched by the search space reduction algorithm is usually much larger
than the amount of true pattern instances. A more informative measure for these situations

is the precision and recall.

Precision measures the proportion of correctly predicted positive examples and again
reflects a percentage value. The precision is low if either no positive samples were correctly
classified, or if many negative samples were classified as positive samples. Recall on the other
hand measures how many of the positive samples were predicted. Both are somehow inverse
related i.e., high precision often comes with low recall and vice verse. The measures are
centered around the positive labels and thus do only provide indirectly information about
the negative samples. This transitively applies also to the f-score as it is the harmonic mean
of both.

Matthews Correlation Coefficient (MCC) ranges from —1 to 1 where 0 states that the
classifier has the same performance as random guesses, —1 that it is a completely wrong
classifier and 1 that it is a complete correct binary classifier. It uses all four frequencies
(TP,TN,FP,FN) and is often a more balanced evaluation of the performance than the others.
In contrast to the previous measures, MCC does not provide deceivingly good estimates for
classifiers if the dataset is imbalanced. For example a majority classifier that always predicts
the negative class because the class represents 99% of the class distribution would still result
to a coefficient of 0. The majority classifier would force the numerator to 0 which is similar in
the inverse case. MCC is the Pearson Correlation Coeflicient computed out of the confusion
matrix thus the interpretations are interchangeable. This includes the guidelines with respect
to coefficient interpretation given in Table 5.3 proposed by Evans [13]. Evans splits the
absolute range between 0 — 1 into 5 levels of strength associations ranging from very weak to
very strong. Although these interpretations are related to the linear correlation between two
variables they may still prove valuable in terms of intuitive judgment. That is, a classifier
with a coefficient > .6 can been seen as a strong classifier giving "good" results. Off course the
total appropriateness of a classifier needs to be evaluated in the context of its application but
the strength association provides a way to quickly and intuitively estimate the performance.
This is important because in contrast to percentages like accuracy, precision, recall, etc.,

MCC is not as straight forward interpretable as it represents a correlation.

Table 5.3.: Pearson Correlation Coefficient interpretation guide by Evans [13].

Coefficient
Strength of Association Positive Negative
very weak 0.00 to 0.19 —0.00 to —0.19
weak 0.20 to 0.39 —0.20 to —0.39
moderate 0.40 to 0.59 —0.40 to —0.59
strong 0.60 to 0.79 —0.60 to —0.79
very strong 0.80 to 1.00 —0.80 to —1.00
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A total framework for evaluation of classifiers is given by the Receiver Operator Characteris-
tics (ROC) [14]. It uses visualization techniques to assess the performance of classifiers called
ROC graphs. ROC graphs are two-dimensional graphs in which the T PR is plotted over
FPR and every point in the graph corresponds to the performance of a single classifier. The
graph visualizes the trade-off of classifiers with respect to these measures such that classifiers
can be selected depending on the preferred misclassification type. Precision/Recall graphs
(PR) on the other hand are more appropriate for the case of imbalanced data. Again imaging
a imbalanced dataset with L >> L, than it can be easily seen that changes within the F'Ps
are not captured well as the FFPR will have a large denominator because of the negative
examples. PR graphs on the other hand are sensitive to the F'Ps within a imbalanced set
because of the precision metric and its ratio given in Equation 5.7.

This was just a brief introduction into measures for binary prediction performance and
in depth discussions are given by Haibo and Garcia [21], Baldi et al.[7], and Powers and
Ward [40]. Not every measure is appropriate in every situation and choosing the right one is

important to not over or under estimate the models performance.

5.2. Detecting Design Pattern via Convolution Neural Networks

Detecting design patterns is a non trivial task as languages allow the developers to implement
them in various different ways. Additionally the rather loose class arrangements given by the
pattern descriptions provide developers with some space of interpretation that contributes to
the divergence between the different implementations. This creates the perfect context for
machine learning and its algorithms to do its work as many publications within the DPD
community show.

Uchiyama et al. [52] uses neural networks to detect different roles that were provided
by humans specialists. Input of these networks are the features evaluated via the GQM
procedure as mentioned above. These metrics are also hand selected via a human specialist
which are than used to train a neural network. After training developers input a sample
system plus the semi-automatic selected candidate mappings that should be considered during
the detection process. The output of the system are confidence values for each role (globally
for all pattern that have been predefined) and based on these values it computes the most
likely pattern. For example inputing Template Method and Adapter would result into a list
of their roles along with their confidence values which add up to 1. The confidence value
for a pattern is then computed by aggregating the role values and comparing the total to a
predefined threshold. Sadly the work did not provide any details on the network structure
or how the hyper-parameters for the different networks are selected. Simiar Alhusain et al
[1] used neural networks on class relationships to evaluate candidate mappings. As with the
work of Uchiyama no details of the network topology or the used hyper-parameters is given.

Zanoni et al. [57] evaluated 7 different learning algorithm along with different hyper-
parameters to find the most appropriate model class for DPD. Model classes range form
Naive Bayes, Decision Trees to Random Forest and Support Vector Machines where each was
trained with different regularization methods or different kernels (SVMs). The report provides

accuracy and fl-score along with the AUC thus only a skew view on the true performance
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of the classifiers. This is not a real problem for the results of Factory Method and Adapter
as the class distribution inferred from the ZeroR classifier is nearly balanced. For the other
patterns ZeroR is not returning 0.5 accuracy implying imbalanced datasets thus hard to
evaluate results. Furthermore the results of the detectors were manually evaluated therefore
the dataset size was limited to 1000 candidates. It is unclear whether positive mappings
were added to a higher priority than negative samples to avoid datasets that contain only a
handful of positives. Nonetheless this needs to be factored in into all results as the learning
algorithms were probably exposed to a different class distribution than in real world examples.
Performances (best results) for the balanced cases are .86 via C-SVM with radial kernel for
the Adapter, and .82 via Random Forest for the Factory Method indicating a relative good
fit by the classifiers. All in all no preferred learning algorithm can be concluded. This is also
because the evaluation of DPD tools is currently a weak spot in the entire DPD community
despite the attempts with the benchmark platform.

Tsantalis et al. used a method beyond typical machine learning algorithms called similarity
scoring. The method captures the pattern class diagram in form of adjacency matrices where
each OO aspect is reflected in its own matrix (adjacency matrix for: generalization, method
invocation etc.). These matrices are then compared with the matrices that the candidate
mappings produce. The comparison is done via an iterative approach given by Blondel et al.
[8] that calculates the similarity between vertices of two graphs. The method was applied on
three open source projects (included in this work) and results in 100% recall and precision
for nearly every pattern. One reason for these good results is that only the defining roles of a
pattern have been retained in the patterns to avoid false positives.

The approach present by this work uses convolutional neural networks on the feature maps
described in Chapter 4. It is similar to the work of Tsantalis in which sub-trees in form of
adjacency matrices are compared. It also shares commonalities with the work of Zanoni in
which micro-structures are used to detect design patterns, but diverges strongly in the actual
detection process and in the data representation. This work uses feature maps to represent
the same sub-tree from multiple perspectives (features) and CNNs to convolve over these.
This enables the classifier to reason about different aspects of a sub-graph at the same time
and to find correlations between them. Humans analyze systems in a similar way by finding
a class as entry point, and inspecting the different edges between the classes. The difference
is that humans usually work sequence and "store" the previously found relationship by re-
membering it. The stored information is then compared on the fly with the new observations

which is off course error prone and tedious, and the main reason why there exists no big dataset.

The following sections captures the experimental setup used to derive the provided models.
Each subsection provides detailed information about one step within the data analysis

workflow such that experiments may be repeated.

5.2.1. Data

Supervised machine learning techniques inspect labeled data (input and output is know) and

build models from it. These models are then able to predict the output from newly given
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inputs for which no output is know beforehand. So in order to train a design pattern detector
a big set of pre-classified role mapping instances is needed from which the learning algorithm
can build the model. Labeled data is in some situations hard to come by because it is either
expensive or difficult to collect. In the case of design patterns both problems occur, not only
is it time consuming to inspect systems for patterns but also the agreement among the human
experts that classify the examples might diverge because of the different interpretation a
pattern implementation may provide. This work uses the Pattern-like Micro-Architecture
Repository (P-MARt 04/10/19) [56] which is a peer-reviewed repository that contains 9 open
source projects along with their design patterns. The repository was used in many research
projects and contains various instances of patterns that can be used for detection purposes.
Applications within the repository range from modeling and drawing tools to static analysis
and refactory frameworks. The diversity of the projects is good representation of the real
world but their implementation is a little dated. For instance QuickUml is already 15 years
old by the time this work was written thus lacks state of the art advancements in language

and software system design.

Table 5.4 contains the basic statistics of the projects within P-MARt. The biggest project
is Netbeans, which could not be used because of multiple error during the analysis with the
Spoon framework. Uncommenting of the problematic code sections turned out to be futile as
there were to many of them. Furthermore, removing too many code fragments could have
compromised and biased the detector because of incomplete data. At the end the project was
excluded from the set to avoid any bias. This is problematic because Netbeans contains more
than 50% of all Adapter instances within P-MARt (8 unique instances). The second biggest
contributor of pattern instances is the JHotDraw project (155 types) that implements 22
unique instances over 12 different design patterns. This is quite impressive as Netbeans with
2558 types only implements 4 different DPs (mainly Adapter). Table 5.5 provides a pattern
centric perspective of P-MARt where the singleton pattern is the most popular out of these.
It occurs 13 times in 7 different projects and indicates that many projects need the concept
of a single instance within one runtime. Least often implemented is the decorator pattern
that is present in 2 projects (JHotDraw and jUnit). Most instances are given by the Adapter
pattern which indicates its usefulness in the context of frameworks as Netbeans contributes a
total of 2612 instances. No additional source of pattern instances was used within this work
leading to a rather small sample size that ranges from 2 to 13 unique instances per pattern.
Truly, the amount of independent instances is not high enough for a classical machine learning

problem and this gets even worse if noisy samples are removed.

Two different datasets were used to train and evaluate the hyper-parameters and mod-
els. The first dataset are the observations provided directly by the sampler without any
modifications. This dataset represents the real world situation the inference method is
operating in, as the data follows the exact same pipeline (source to AST to MS to FRN
maps) as in production. Table 5.6 contains the class distribution for each pattern with-
out the Netbeans project. Observations that map classes from third party libraries were
removed from the dataset. This includes samples that map to classes within the pack-

ages java.awt, javax.swing, com.borland.primetime, org.w3c and org.apache. Some
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Table 5.4.: Pattern-like Micro-Architecture Repository (P-MARt) [56] includes 9 open-source
projects. Pattern instances where peer reviewed nevertheless the authors do not
claim that all possible patterns are declared.

Project Version Number of Types Unique Mappings Mappings
QuickUml 2001 155 7 103
Lexi 0.1.1 24 5 13
JRefactory 2.6.24 569 11 2147
Netbeans 1.0.x 2558 26 4146
JUnit 3.7 79 8 218
JHotDraw 5.1 155 22 3201
MapperXML 1.9.7 217 13 208
Nutch 0.4 172 12 104
PMD 1.8 447 10 43

Table 5.5.: Distribution of the detected pattern within P-MARt. Project Distribution de-
scribes in how many projects the given pattern was found.

Pattern Project Distribution Unique Mappings Mappings
Adapter 4 13 2952
Composite 4 ) 1149
Decorator 2 176
Factory Method 3 7 522
Singleton 7 13 13
Template Method 3 8 85

samples within the project’s namespace did not exist, e.g., com.taursys.xml.CheckBox
or net.nutch.db.LinkMD5Extractor, thus were also removed. It is not possible to detect
patterns with these observations as the source is not given hence no features can be extracted.
Sadly this removes quite a lot of Adapter instances within the jRefactory project (~ 24
instances). The class distribution for each pattern is extremely skewed towards negative
samples with a mean positive instance proportion of 1.175 - 1072, This off course influences
the training of the model therefore extra precautions need to be taken. The Adapter pattern
with its extreme high amount of negative instances has the smallest proportion of positives
samples. This immediately indicates that the adapter sampler needs to be revised in order to
avoid the huge amount of negative instances. On the other side of the scale lies the Decorator
with only 688 negative samples resulting in a acceptable proportion of .2325. It should be
noted that P-MAR¢t does not claim to be complete, i.e., all possible instances within the
projects are given. Thus it may be that the detector finds observations among the negative

instances that are actually a true instance.

92



CHAPTER 5. DESIGN PATTERN DETECTION 5.2. DPD VIA CNN

Table 5.6.: Negative instances describe all FPs and positive instances all TPs that are returned
by the samplers. Positive Instance Proportion describes the amount of positive
instances within all instances returned by the respective sampler.

Pattern Negative Instances Positive Instances Unique Instances Positive Instance Proportion
Adapter 106,937 164 13 1.533-1073
Composite 32,126 210 5 6.536 - 1073
Decorator 688 160 2 2.325-1071
Factory Method 21,857 91 7 4.163-1073
Singleton 1,858 13 13 6.996 - 1073
Template Method 2,099 82 8 3.906 - 1072

The second dataset is a synthetically enriched set of positive observations. Positive samples
are taken without any further modification. Negative samples though, are synthetically
created such that the class distribution can be freely set. This is useful for initial model
and parameter evaluations as the direct dataset often causes sub-optimal models that always
predict the majority class (negative samples). The synthetic dataset circumvents this problem
by providing a balanced label distribution such that the model converges and generalizes
properly. Obviously the distributions between direct and synthetic dataset is different, not
only with respect to their class distribution, but also with respect to the features within
observations. Models trained with this dataset cannot make proper prediction on the real
data created by the sampler, nevertheless they can function as initial model from which the
true training may start (pre-training). Negative samples are created by mutating the role
mappings of positives samples. The mutation uses n of the £ mappings of an observation
and replaces the true classes, with classes that do not map to the same unique mapping (the
equivalence class) thus are unrelated. This happens on a project basis and the mutations
are random among the roles. Furthermore the amount of roles that are modified within
an observation is evenly distributed over the total amount of DP roles and observations.
For example a dataset with 100 positive examples for a DP with 4 roles will contain 25
negative observations in which only 1 role is modified, 25 negative observations in which 2
roles were modified and so forth. Again, the rational of the dataset is not to represent the

true distribution but to create means by which appropriate model architectures can be found.

5.2.2. Preprocessing

The first preprocessing step is the feature normalization mentioned in Chapter 4. This
leads to feature maps that contain positive integers ranging from 0 to 161. The second step
normalizes these integer such that they are contained within a tighter range. Many machine
learning algorithms including neural networks work best if the data has a mean of 0 and a
variance of 1. The intuition is the algorithms interpret the magnitude of the values thus get
biased towards certain features. A very prominent scaling method is the z-score in Equation
5.1 which subtracts the mean from the data and normalizes it by its standard deviation.
First operation centers the data around 0 and the second normalizes dimensions such that

they are of approximately the same scale. This is not useful in the case of feature maps as it
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destroys the identification properties of the values. Experiments with the z-score confirmed
this behavior resulting in models that either converged extremely slow or not at all. Feature
scaling given in Equation 5.2 is more appropriate in this situation as it preserves the identity
property of the coefficients. Best convergence was reached by either scaling the values around
0, e.g., between —50 and 50, or by applying no scaling at all.

The third preprocessing step uses a slightly modified version of the Easy ensemble method
[28] that helps balancing the class distribution. Easy ensemble is an undersampling method
used in imbalanced settings, in which k£ randomly selected observations from the majority class
are used to level with all observation from the minority class. Usually & is set to |Crinortyl
thus perfectly balances the data set but other ratios are sensible in order to preserve the true
distribution. One big drawback of plain undersampling is that it throws away a lot of valuable
information of the majority class. Easy ensemble circumvents this issue by subsampling T
independent datasets and uses them to train T classifiers. Each classifier is exposed to a
different subset of the majority class but will always see the entirety of the minority class.
The final model is constructed by combining the different predictors into one strong model.
First advantage is that it simplifies the training as each weak model converges faster because
of the balance between the classes. The second advantage is that the ensemble classifier is
still able to distinguish the majority class and the minority class given their real (skewed)
distribution. The obvious drawback is that training T classifiers can be time consuming and
technically demanding as the space demand for 1" models might exceed the resource limit of

one machine.

5.2.3. Feature Selection

The project extracts micro-structures that represent sub-graphs within the ASG and uses
them as features in the inference step (Chapter 2). In total 67 different micro-structures are
extracted from the source code, which combines the majority of the Elemental Design Patterns,
Micro-Patterns and Design Pattern Clues, as basic characteristics of OO programming. Many
features are only relevant in the context of a specific pattern, especially the DPCs. As
mentioned in Section 5.1.3, selecting the most relevant features is a hard task as it is not
always clear which features are truly useful or not. The approach followed in this work
uses wrapper methods to select appropriate features, more specifically it used boosted trees
from the gbm package [41] and random forest from the randomForest package [3] as the
underlying models. Both classifiers are used to compute the feature importance by repeatedly
computing the fit of the models with a subset of features. This is done automatically via the
Classification And Regression Training (CARET) package implemented by Kuhn [26]. Caret
offers a wide variety of training algorithms, parameter tuning, model and feature selection
procedures and acts as facade for many prominent R-packages.

Given a dataset for a specific pattern, the feature selection method computes for each
role the feature importance resulting into k£ feature rankings where k is the amount of roles
a DP has. The final feature selection is then determined by the union of all features that
have non-zero importance. Figure 5.9, 5.10 and 5.11 visualizes the results of the importance

computation for each pattern. The color intensity of each tile reflects its importance for
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the specific DP role. The features are sorted by their coverage, i.e., for how many roles it
is important, and by its overall importance, i.e., the mean importance along all DP roles.
Noteworthy features that are contained in almost all multivariate patterns are off course
the basic OO concepts like Inheritance, Association, Realization, Aggregation etc. Also the
EDPs (Deputized) Redirection, (Deputized) Delegation, as the Concrete/Parent Product
Returned occur quiet often within the feature sets as they also capture basic notions of
programming. The feature set for the Singleton pattern contains exactly the feature someone
would expect with the most important feature being the Protected Instantiation. Additional
all features related to self instances within a class are also part of the set reflecting the gist of
the Singleton pattern. The visualization illustrate the features that are important for certain
communication schemes or structural configuration within the patterns. For instances the
Inheritance MS is important for the Adapter and the Target of the Adapter pattern and
reflects its structural requirements. Another example would be the Aggregation within the
Decorator pattern. The Concrete Component’s aggregation importance is quite low as in
contrast to all other roles. This captures the structure of the Decorator pattern as Concrete

Component is usually the aggregatee, not the aggregator.

5.2.4. Model Selection

There exists a wide variety of model classes as mention in Section 5.1.4 each having specific
strengths and weaknesses. The model class used within this work are Neural Networks, more
specifically Convolutional Neural Networks. Their advantage is that they are specialized in
detecting local correlation within a matrix, i.e., they are capable of learning how several small
patterns within a matrix interact. It does this by capturing important objects/patterns as
it convolves over the matrix with a small window (receptive field). Objects in the case of
feature maps are OO properties and interactions (height) between a limited set of classes
(width). Thus CNNs on feature maps inspect via their receptive field different combination of
these properties and interactions on multiple levels of abstraction. Each convolutional layer
sees a certain level of abstraction where the first layer inspects the plain micro-structures
given in their feature maps. As always with neural networks the specific network topology
needs to be developed by a series of experiments each shedding light on how many layers,
units, which activation, etc are needed to handle the complexity of the data. Deriving the
network topology can be a delicate endeavor as CNNs are black box methods, i.e., the exact
way the model computes its results can not be decoded by normal means. Furthermore CNNs
are trained via gradient descent that may run into sub-optimal local minima preventing the
models to learn anything. That said, models presented within this work were derived by
using the synthetic dataset such that a coarse network topology could be derived. Directly
using the imbalanced datasets provided by the samplers was not possible because it resulted

mainly in majority class predictors (except for the Singleton classifier).

Network Topology

Table 5.6 contains the network topology derived by the initial experiments on the synthetic

dataset. The network topology is similar to the well known CNN LeNet [55] and contains in
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Figure 5.9.: Feature Importance for the Adapter and Composite roles. The darker the tile
the more important the feature for the specific role. Tiles are sorted by their
coverage of DP roles and total importance.
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Figure 5.10.: Feature Importance for the Decorator and Singleton roles. The darker the tile
the more important the feature for the specific role. Tiles are sorted by their
coverage of DP roles and total importance.
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Figure 5.11.: Feature Importance for the Factory Method and Template Method roles. The
darker the tile the more important the feature for the specific role. Tiles are
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total 21 layers. There are two convolution layers at the beginning of the network followed by
three dense layers. The shape of the input tensor has one channel, a height of 67 (features)
and a width of 3 (e.g, roles for the composite pattern). The output shape is one scalar
representing the probability that the input is of a certain pattern. b within the output shapes
of Table 5.6 is the amount of observations within one batch of samples. Each convolutional
layer is followed by a relu activation and a max pooling layer. Dense layers use relu or tanh as
activation and are preceded by dropout layers that help to regularizing the model. The filter
of the convolutional layers have a width equal to the amount of roles and a height of 3. Max
pooling reduces the size of the feature maps by a half along the height (features) but does not
pool along the width (roles). Thus the model learns abstract concepts among the features
but always considers the entirety of the DP roles. Resulting models have a total of nearly 1.5
million parameters that are learned over the course of the training. Batch normalization [42],
a normalization layer that normalizes the activations after each layer, could not provide any
advantages during training. Assumptions are that it behaves similar to the z-score damaging
the identification properties of the coefficients of the feature maps. No advanced network
topologies and layers (e.g., RNN, LSTM, ResNet) were used in the experiments as the goal

was to assess the basic applicability of deep learning in the context of DPD.

Training the network given in Table 5.6 directly on the real dataset results in majority
predictors because of the extreme imbalance. Easy ensemble helps to improve the learnability
of the data by balancing the class distribution for each ensemble participant (weak learner).
This means that instead of one model with 21 layers and 1.5 million parameters, k copies
are trained each exposed to a different subset of the majority class in the datasets. This
approach enables each weak learner to properly converge while still letting the ensemble model
the true distribution. The initial network from above is used as blueprint for the ensemble
participants in which the network topology is fixed. This limits the set of possible parameters
that need to be searched in order to find the optimal configuration for the bootstrapped
sampled dataset. What remains are the layer parameters that need to be selected such that
the model performs best. Maximizing the model performance by the correct selection of
model parameters is often a "black art" and requires expert experience or brute-force methods.
Snoek et al. [45] circumvent this problem by constructing a Bayesian optimization problem
that maximizes the generalization performance of a given model over a set of configurations.
Bayesian optimization builds a model of the parameters and their performance such that the
next best configuration can be predicted with respect to the uncertainty. The uncertainty is
off course the classifiers performance under a certain parameter configuration, i.e., the DPD
detector and its performance with a set of hyper-parameters. A Gaussian process, a function
of the form f: x — R, is used within the optimization as prior distribution and functions as
assumption how the parameters are distributed. An acquisition function, e.g., Probability
of Improvement, Gaussian Process Upper Confidence Bound, etc, is than used to make the
actual prediction of the next best configuration. So instead of searching parameters on a
fixed grid, randomly or via a brute-force method, Bayesian hyper-parameter optimization

builds a proper model of the parameter configurations and their performance implications
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Table 5.7.: The basic network topology derived via the synthetic dataset. Output Shape
describes the shape of the output tensor of the respective layer and parameter
count the number of trainable parameters. The network contains 2 convolutional
layers that drive 3 dense layers plus the output layer.

Layer Type Output Shape Parameter Count Connected to
1 Input Layer (b, 1, 67, 3) 0 -
2 Convolution2D (b, 8, 67, 3) 80 1
3 Activation (relu) (b, 8, 67, 3) 0 2
4 MaxPooling2D (b, 8, 33, 3) 0 3
5 Convoluation2D (b, 16, 33, 3) 1168 4
7 Activation (relu) (b, 16, 33, 3) 0 5
8 MaxPooling2D (b, 16, 16, 3) 0 6
9 Dropout (b, 16, 16, 3) 0 7
10 Flatten (b, 768) 0 8
11 Dense (b, 1024) 787 456 9
12 Activation (relu) (b, 1024) 0 10
13 Dropout (b, 1024) 0 11
14 Dense (b, 512) 524,800 12
15 Activation (tanh) (b, 512) 0 13
16 Dropout (b, 512) 0 14
17 Dense (b, 256) 131,328 15
18 Activation (tanh) (b, 256) 0 16
19 Dropout (b, 256) 0 17
20 Dense (b, 1) 257 18
21 Activation (sigmoid) (b, 1) 0 19

Total Parameter Count: 1,445,089

such that an informed decision can be made. The final model parameters can be found in

the Appendix A and are product of this optimization technique.

5.2.5. Model Training

Models within this work are trained via project-fold cross-validation, i.e., each project
represents a fold that is used once for validation. This is necessary to fulfill the i.i.d.
assumption and to make the performance evaluation between models reliable. Cross validation
will result a deceivingly good performance for datasets where project samples are mixed
between training and validation set because of the dependencies between pattern instances.
As mentioned in Section 5.1.1, i.i.d. implies that changing one specific sample does not
influence any other sample. This is to a large amount enforced by unique mappings as
usually changing the classes assigned to the roles of one unique mapping does not influence a

second mapping (of the same pattern type). Off course there might be the case where a class
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participates in multiple unique mappings for the same pattern, e.g., a class might be the
adapter in one, and adaptee in a second unique role mapping. The uniqueness property, that
the defining roles are different, would still hold, nonetheless the case in which two observations
do not influence each other can not be ruled out. Hence making folds on project boundaries
is the safest approach to guarantee an appropriate level of independence. An implication of
this design choice is that the cross-validation might not be as stable as expected since it can
happen that the validation fold contains only very few example of the positive class. This
may lead to a higher variance between the folds since it very likely that one of fold performs

significantly worse than the others.

Figure 5.12 illustrates the training processes in which the dataset contains three projects
P1, P2 and P3. Cross-validated bagged learning is used in contrast to bagged cross-validated
learning as suggested by Petersen et al. [39]. First applies cross-validation among the
ensembles, second applies cross-validation on the level of weak learners. As pointed out by
Petersen et al., bagged cross-validated learning does not evaluate the performance of the
ensemble properly because of the increased bias caused by double sampling. The intuition
is that each weak-learner is evaluated correctly (via cross validation) hence would allow for
proper model selection on a specific bootstrap set (sampled dataset for the weak learner).
However this does not mean that the selected model parameters perform equally good if an
ensemble of them is used, thus an evaluation of the ensemble rather of the weak learners
should be used. Cross-validated bagged learning, as used in this work, splits the data into
folds illustrated in the first level in Figure 5.12. Each fold consists of one project used as
validation set (green) and the remaining projects as training set (blue). Easy ensemble is than
applied to each of the folds in which the datasets are sampled multiple times illustrated by
the second level in the Figure. The sampling process balances the class distribution such that
each bootstrap dataset (e.g., dataset used to train Model 1.1) contains all minority samples
that are available within the fold dataset, along with the same amount of majority samples.
The majority samples between bootstrap datasets are independent such that the ensemble of
models has knowledge about the entirety of the majority class, but each weak learner focuses
only on a small proportion of it. Model 1.1. and Model 1.2. build up Ensemble 1, which
is then validated on the entire validation set (P1) assessing the generalization performance
of the ensemble. Evaluation results from the folds are than combined by averaging the
performances, leading to the overall generalization performance of the model on the dataset.
Despite the fact that cross-validated bagged learning is more reliable in its evaluation, bagged
cross-validated learning might still prove value in setting where the cross-validation is unstable
because of the class distributions (as it is the case in this work). The assumption is that the
pessimistic bias introduced by the unstable cross-validation folds caused by validation sets in
which only a handful of positive samples are present, is worse than the higher bias introduced
by the validation of weak learners. It trades the extreme variance of the folds for a higher
bias stabilizing the overall performance evaluation. Nevertheless this assumption needs to be

evaluated in an isolated context thus exceeds the scope of this work.
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Figure 5.12.: The data is split on project boundaries into multiple folds (Cross-Validation).
These folds train an entire ensemble by sampling different bootstrap dataset
from it (Ensemble). One model per bootstrap set is trained and the average
performance among the folds represents the generalization performance of the
detector.

5.2.6. Model Evaluation

Several models are trained in order to validate one parameter configuration. The exact amount
depends on the number of folds (projects) and the number of bootstrap sets that are used. On
top of this, hundreds of parameter configurations are evaluated within a limited parameter
space via Bayesian model optimization. This multiplied by the 6 patterns leads to thousands
of models that are trained and evaluated thus makes the model selection a hard task. Models
are evaluated via cross-validated bagged learning with the Matthews Correlation Coefficient
as performance metric. The performance of the cross-validated parameter configuration is
then the average performance of the folds (and their respective ensembles). The optimization
expects a loss metric that is minimized as different model configurations are trained and

evaluated. A simple approach is to define the loss as

_MCC+1

£=1 S (5.14)

which normalizes the MCC to a range of [0, 1] and converts it into a loss function with a
maximum of 1 and a minimum of 0. £ shares similar properties as MCC, i.e., it is less prone to
imbalanced class distributions and provides a scalar measure of the performance representing
the correlation between predictions and labels. Obviously £ is not optimal in every situation
as it does not allow to trade the performance between negative and positive classes. This
is useful in situation where one class is more valuable than another class. Nonetheless L is
appropriate in this setup up as it is merely a proof of concept and further optimizations with
respect to the cost functions are postpone for future work.

Table 5.8 contains the performance measures of the final models for each pattern. The

accuracy is very high for nearly all models (except for Adapter), nevertheless the values
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should be handled with caution. Accuracy measures the performance of the classifier at one
"optimal" threshold point. The threshold point is the cutoff probability at which a sample
is classified as positive or negative and is based on the threshold that results the maximum
MCC. Thus different cutoff points result into different accuracies which are sensitive to the
imbalance of classes. A more informative measure is the Area Under Curve (AUC) that
measures the discrimination performance of the classifiers given a pair of randomly chosen
positive and negative examples. It is the area under a roc curve, e.g., area under the CV
line in figure 5.13a and measures the performance across all cutoff points. All of detectors
perform very good (u = .932;0 = .066) in terms of classifying the positive samples. The
AUC is visualized in their respective ROC curve in the Figures 5.13a, 5.15a, 5.17a, 5.19a,
5.21a, 5.23a. AUC provides a reliable view on the classification performance with respect to
the positive class, i.e., how many positive samples where correctly classified and how many
negative samples where falsely labeled as positive class. The recall among pattern detectors
is p = .833;0 = .133 thus has with a sightly higher standard deviation. All instances of
the Decorator pattern are detected, and almost all instance of the Template Method (.913).
Factory method is the worst pattern with a recall of .603 along with the best precision of
.844. The worst precision is given by the Adapter with only .123 caused by the instable
cross-validation, i.e., one validation fold contains only one example introducing a rather high
variance between folds. The Composite detector has the second worst result of .328 impaired
with a good recall of .809. The average recall is u = .833; 0 = .133 and speaks for the usability
of the method in terms of finding design patterns. An aggregated view on to all measures is
given by MCC where the fit of the Singleton detector is very strong and above average with
.813. The average MCC is u = .581; 0 = .244 which is mostly pulled down by the Adapter
pattern with a very weak fit of .139 caused by the low precision. All other detectors have

either a moderate or strong fit hence confirms the benefit of the presented methods.

Table 5.8.: Performance metrics of the cross-validated ensembles for each of the 6 detected

patterns.
Pattern Accuracy Precision Recall F-Score AUC Matthews Cor.Coeff.
Adapter 754 123 .809 .066  .808 139
Composite 961 .328 .818 224 928 .492
Decorator 911 .689 1.00 399 950 772
Factory Method .985 .844 .603 305 984 .649
Singleton .996 .809 .857 398 1994 .813
Template Method 871 513 913 319 927 .620

Adapter

Figure 5.13 shows the ROC and PR curve of the Adapter pattern. Folds are given as
dash dotted lines and provides detailed insight into the evaluation. Fold 3 of the Adapter

pattern contains 57,435 negative examples along with only one positive sample. Similar
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Fold 2 contains only 3 positive samples that come along with 36,617 negative samples.
These extremes are the main source of the detector’s weak performance and may be easily
circumvented with more positive samples and a revised sampler that narrow the search space
even further. The precision is rather instable as Figure 5.13b illustrates and drops rather

quickly below .25 with increased recall.
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(a) ROC curve and AUC for the Adapter classifier (b) Recall/Precision curve for the Adapter pattern.
along with its fold performance.

Figure 5.13.: ROC analysis of the Adapter model.

Figure 5.14 gives insight into the classes with respect to the cutoff. Each dot represents an
observation within any fold of the cross-validation. This results into horizontal clusters and
provides a detailed view on the threshold requirements of the final model. Violins illustrate
the observation distribution on a specific thresholds abstracting the dot cloud for better
readability. Negative samples are limited to 2000 observations to avoid over-plotting. The
figure shows FN, FP, TN, TP with respect to the "optimal" cutoff point given at 0.63. The
cutoff is the weighted-mean of all optimal cutoffs with respect to the fold performance. This
may not be the optimal choice as the actual threshold depends on the value of the classes in
a certain use-case. In some situation it might be better to predict conservative in some it is
best to relax the threshold. Negative samples have two distinct clusters which is similar to
the positive case. The positive case is good enclosed where the negative reaches up into the
positive distribution. A detailed inspection of these overlapping negative samples would give
a valuable insight into the sampled adapter candidates and where the samples, detector or
the reviewed dataset needs to be improved. It can be concluded that the adapter patterns
performance is not significantly worse than the other detectors, in fact the ROC curve
indicates a good discrimitve performance. Nevertheless the amount of provided candidate
samples need to be reduced plus additional positive samples within the folds is needed in

order to leverage the full potential of the detector.
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Figure 5.14.: The weighted average of thresholds among folds resulted into a proposed decision
boundary of .71. It reduces the overall FP but causes an entire cluster of FN.
Depending on the cost-function of the use-case a threshold that favors FP might
be more appropriate.

Composite

The ROC curve in Figure 5.15a for the composite pattern shows a very good fit for all
folds except for fold 4. This indicates that the model learned a good representation of the
positive examples. The PR curve in Figure 5.15b shows a rather high variance in terms of
the precision undoubtedly caused by the imbalance. Fold 4 has an overall bad precision thus
is an interesting point for further research. All other folds behave similar with a drop of
precision at about .5 recall.

The optimal threshold is given at .61 in Figure 5.16. The negative samples produce three
very distinct clusters that occur at the end of the positive extend. A rather harsh cutoff
point is located at ~ .44 at which the classifier abruptly sets the boundary for positive
examples. The positive extend reaches far into the area of negatives samples and may be
the combination of two distinct projects. All in all it can be concluded that the composite
detector is good in detecting positive examples. Again the precision mostly dependents on
the amount of sampled data but the optimization potential is rather low in the section. An
additional analysis of Fold 4 and Fold 1 might prove valuable insight such that the overall fit
can be solidified.

Decorator

The Decorator has only two folds thus is more stable in the the ROC (Figure 5.17a) and
PR (Figure 5.17b) curve. Further more the Decorator datasets has the highest proportion
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(a) ROC curve and AUC for the Composite classi- (b) Recall/Precision curve for the Composite pat-
fier along with its fold performance. tern.

Figure 5.15.: ROC analysis of the Composite model.

of positive samples thus provide valuable insight of the approach in a less extreme class
distribution. The fit indicates a slightly higher proportion of FPR in order to reach the
maximum TPR compared to the previous models. This is caused by the FPR denominator
being magnitudes lower than in the above example resulting in a higher sensitivity within
the graphs. The average precision is good and stable even with at higher true positive rates
(recall).

Figure 5.18 illustrates a very interesting distribution of samples. Each class has two clusters
belong to each other resulting in a rather questionable "optimal" threshold of .45. This leads
to a rather deceivingly bad illustration of the facts as the image combines all datasets and
fits into one graph. The most interesting part is that the clusters of positive and negative
samples obove the threshold overlap perfectly indicating instances in the dataset that are
probably unlabeled decorator instances. This off course needs a throughout investigation but
the cluster highly incentivise this assumption. The decorator is one of the strongest detectors
among the others and the distribution within Figure 5.18 helps to understand why (despite
illustrating it worse than it is). No FN are produced thus solidifying the assumption that the
detectors learn a good representation about the true instances and mostly suffer from the

extreme imbalance.

Factory Method

Factory Method with its wide variety of implementation styles provides a very good AUC
and good precision with respect to the recall. This can be seen in Figure 5.19a in which the

AUC of .984 indicates a very good fit for positive samples. The PR curve, which is more
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Figure 5.16.: The weighted average of thresholds among folds resulted into a proposed decision
boundary of .61. The threshold balances the FP and FN quite well and might
be appropriate in many use-cases.

sensitive to the imbalance, shows a similar good behavior for Fold 1 and Fold 2, but an
extreme decrease of precision for Fold 3.

Figure 5.19a helps understanding the problem a bit better in which two big clusters of
negative examples exist. One reaches rather far into the positive distribution and represent
probably samples that have the same structural properties as Factory Method instances.
Factory Method has a rather generic structure in which a method (probably inherited) creates
and returns a different type. This scheme matches on a lot of implementation situations but
is seldom considered as the implementation of a certain pattern. The cutoff point within the
Figure are extremely skewed because of the high variance between the fold thresholds. A
more appropriate threshold would probably be at ~ 55 excluding a big batch of FP. All in all
in can be concluded that the general performance is good with respect to the precision but

moderate with respect to the recall.

Singleton

The singleton detector is the best with respect to precision and recall. Of course this is
caused by the fact that Singleton has the second highest proportion of positive instances
within the dataset (6.999 - 1073). Both, ROC and PR curve, given in Figure 5.21a and 5.21b,
show very good average performances among the folds.

Figure 5.22 illustrates the observation distribution in which only a handful of examples (13
in total) are present on the positive side. The negative samples indicate a rather uniform

distribution over the entire threshold space where the positive samples are mostly located
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(a) ROC curve and AUC for the Decorator classi-(b) Recall/Precision curve for the Decorator pat-
fier along with its fold performance. tern.

Figure 5.17.: ROC analysis of the Decorator model.

the the end of the spectrum. The expectations for the Singleton pattern detector are that
it (nearly) perfectly detects the pattern because of its simplicity. Results indicate that this

expectation is fulfilled to the biggest parts but still has open potential for improvements.

Template Method

The template method detector has a moderate fit in terms of recall with respect to the FPR
as Figure 5.23a shows. Perfect recall is reached at a FPR of .4 implying a rather high cost
for full coverage. The Precision drops at .5 recall below .5 similar to the other detectors but
again increases at a recall of 1.

The distribution shows two distinct blobs in which a second cluster extends within the
range of the positive samples. Again it can be expected that these samples are unintentional
instances of the pattern caused by the generic structure of the Template Method pattern.
The amount of FNs is low similar to the other detectors, where the main problem is given by
the FPs.
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Figure 5.18.: The weighted average of thresholds among folds resulted into a proposed decision
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boundary of .45. It produces quite a lot of FP that may be unintentional
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(a) ROC curve and AUC for the Factory Method (b) Recall/Precision curve for the Factory Method
classifier along with its fold performance. pattern.

Figure 5.19.: ROC analysis of the Factory Method model.
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The weighted average of thresholds among folds resulted into a proposed decision
boundary of .5. The proposed threshold is sub-optimal caused by the difference
of the folds. More appropriate would be a threshold of 0.55.

Figure 5.20.:
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Figure 5.21.: ROC analysis of the Singleton model.
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Figure 5.22.: The weighted average of thresholds among folds resulted into a proposed decision
boundary of .85. The proposed threshold is sub-optimal as a higher value might

produces better results.
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(a) ROC curve and AUC for the Template Method (b) Recall/Precision curve for the Template
classifier along with its fold performance. Method pattern.

Figure 5.23.: ROC analysis of the Template Method model.
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Figure 5.24.: The weighted average of thresholds among folds resulted into a proposed decision
boundary of .54. The proposed threshold produces a good balance between FN
and FP thus might be appropriate in many situations.
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6. Conclusion

This work presented a fully fledged design pattern detection approach ranging from source
code to the actual classification decision. The initial code was transformed into an ASG
from which micro-structures where extracted. These micro-structures represent sub-graphs
within the ASG and express predefined, named and well-understood OO concepts. Based on
these concepts, an intuitive sampling method was presented that extract candidate classes
for a specific pattern from the system. This effectively reduces the search space the source
system classes and design pattern roles span. Furthermore it pointed out problems in the
available peer reviewed data and confirms the need of a platform, on which researches and
developers are able to create comprehensive and manifold datasets. Feature maps were
generated by the feature role normalization and provides means to represent the actual
sub-graphs of the candidate mappings in form of a tensor. Additionally role-role and feature-
channel normalization were proposed as potential alternatives to FRN. Future work can
benefit from the detailed discussion of the normalization approaches and should open a
dialog about the various implications. The basic notions of machine learning where discussed
on an intuitive level by providing an introduction to the main topics of the data analysis
workflow. Standard methods are elaborated such that a common understanding of methods,
pitfalls, and responsibilities is established with pointers to their respective related work.
This helps researchers that are interested in DPD but are unfamiliar with machine learning
techniques to grasp the basics and ease the entrance level difficulties. Feature maps are used
as target medium for convolutional neural networks and is presented in Chapter 5. These
convolve over a multitude of different aspects of a given candidate mapping represented by
the micro-structures. The deep network structure helps to build robust classifiers that reach
moderate to very good results even in the extreme imbalance that some datasets contain.
This was achieved by using an augmented dataset with synthetically generated negative
examples such that a basic network topology could be found. The found topology was then
trained using the Easy ensemble approach such that, despite the hindering imbalance within
the datasets, a good learning progress could be achieved.

We have shown that design patterns are detectable by modern machine learning methods,
i.e., convolutional neural networks. This was done by using state-of-the-art network topologies,
training and evaluation strategies that lead to very promising results. Furthermore, by using
micro-structures to represent the ASG, we have further strengthened the importance of micro-
structures as means of features. They provide a valuable abstraction of the core concepts
while still being interpretable by humans such that advanced reasoning in the detection
process is possible. We have presented yet another alternative that reduces the search space
of the possible design patterns. The detailed analysis of the different sampling approaches

provides, to the best of our knowledge, the first comparable results of the sampling step. It
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showed that the combinatorial explosion can be overcome with simple techniques that traverse
the ASG in a focused manner, collecting the valuable classes along the way. Nonetheless the
provided approach still holds potential that may yield to an improved detection performance
by avoiding excessive oversampling of the search space. This is mainly related to the Adapter
sampler and further optimization may benefit the entire sampling phase of all sampler.
However each sampler reduces the amount of candidate mappings to a manageable size while
still retaining most of the true pattern instances thus fulfilling their main purpose. At last,
this work answers the question whether role-mappings can be efficiently represented such
that machine learning algorithms can handle the data, while still maintaining its inherent
properties.

We are confident that this work provides a valuable first step for deep learning techniques
within the domain of design patterns. There are many open issues and interesting opportunities
for future research. Extending the feature catalog with the remaining MS and new features
carries a lot of potential. More detailed information about the classes within a candidate
mapping may enrich the detectors view onto the inherent properties of the graph and boost
the confidence in the predictions. Optimizing the current sampling techniques may be, despite
the usual focus on the detection step, one of the most important issues that can improve the
overall results. This must include a throughout inspection of the misclassified examples to
avoid over engineering of the samplers while still reducing the amount of proposed mappings.
One of the most interesting open issue is the effect of the different normalization techniques
with respect to the learnability of the data. In depth experiments might suggest one of the
three normalization technique or even inspire a new one. Furthermore, the shear amount
of machine learning algorithms and techniques, especially deep learning architectures, hold

great potential for low hanging fruits in terms of detection performance.
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A. Training Parameters

Table A.1, A.2, A.3, A4, A.5, A.6 contains the actual parameters for Adapter, Composite,
Decorator, Factory Method, Singleton and Template Method. The amount of evaluations
(testing different configurations) depends on the performance of the best model an reaches
from 50 to 200 evaluations. Presented parameters produce the results presented within

Chapter 5 but may not be optimal, i.e., it is very likely that there is a parameter configuration
that yields better results.
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APPENDIX A. TRAINING PARAMETERS

Table A.1.: Parameters for the adapter model.

Adapter Parameter Value
. feature selection true
s
5 preprocess true
bootstrap k 7
optimizer adam
0 nl‘o epoch i()
E learning rate 7.24-1073
S batch size 31
pos cls weight 1.30
neg cls weight 0.79
11 nb row
11 nb col
11 nb filter 14
I1 init lecun uniform
12 activation elu
13 nb row 1
13 nb col 1
14 nb row 2
14 nb col 2
14 nb filter 45
» 14 init uniform
g 15 activation elu
g 16 nb row 1
16 nb col 1
17 p 0.444
19 output dim 916
110 activation elu
111 p 0.528
112 output dim 263
113 activation elu
114 p 0.744
115 output dim 34
116 activation tanh
117 p 0.651
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APPENDIX A.

TRAINING PARAMETERS

Table A.2.: Parameters for the composite model.

Composite Parameter Value
cﬁ feature selection false
S preprocess false
bootstrap k 6

optimizer adagrad

" nb epoch 10
é learning rate 4.17-1073
5 batch size 270
pos cls weight 0.34

neg cls weight 1.56

11 nb row 2

11 nb col 2

11 nb filter 1

I1 init  lecun uniform

12 activation tanh

13 nb row 2

13 nb col 1

14 nb row 4

14 nb col 3

14 nb filter 58

. 14 init  glorot uniform
g 15 activation relu
g 16 nb row 1
16 nb col 1

17 p 0.090

19 output dim 674

110 activation elu

111 p 0.310

112 output dim 103

113 activation relu

114 p 0.322

115 output dim 972

116 activation relu

117 p 0.895
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APPENDIX A. TRAINING PARAMETERS

Table A.3.: Parameters for the decorator model.

Composite Parameter Value
. feature selection false
=
5 preprocess true
bootstrap k 10
optimizer rmsprop
- nl‘o epoch iO
E learning rate 9.99-1073
S batch size 198
pos cls weight 1.99
neg cls weight 1.48
11 nb row
11 nb col 4
11 nb filter 59
11 init lecun uniform
12 activation tanh
13 nb row 2
13 nb col 1
14 nb row 2
14 nb col 4
14 nb filter 1
» 14 init lecun uniform
g 15 activation relu
g 16 nb row 2
16 nb col 1
17 p 0.959
19 output dim 449
110 activation elu
111 p 0.99
112 output dim 470
113 activation elu
114 p 0.0
115 output dim 125
116 activation relu
117 p 0.585

124



APPENDIX A.

TRAINING PARAMETERS

Table A.4.: Parameters for the factory method model.

Factory Method Parameter Value
. feature selection true
s
5 preprocess true
bootstrap k 10
optimizer rmsprop
o0 nb epoch 49
g learning rate 9.47-1073
E batch size 17
pos cls weight 1.39
neg cls weight 1.46
11 nb row
11 nb col 3
11 nb filter 30
11 init uniform
12 activation elu
13 nb row 2
13 nb col 1
14 nb row 2
14 nb col 3
14 nb filter 51
» 14 init lecun uniform
g 15 activation relu
g 16 nb row 2
16 nb col 1
17 p 0.998
19 output dim 774
110 activation tanh
111 p 0.58
112 output dim 971
113 activation elu
114 p 0.192
115 output dim 202
116 activation tanh
117 p 0.100
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APPENDIX A. TRAINING PARAMETERS

Table A.5.: Parameters for the singleton model.

Singleton Parameter Value
. feature selection false
g preprocess false
bootstrap k 7

optimizer adagrad

o0 nb epoch 10
é learning rate  8.17 - 1073
5 batch size 435
pos cls weight 1.790

neg cls weight 1.721

11 nb row 2

11 nb col 2

11 nb filter 63

11 init uniform

12 activation relu

13 nb row 2

13 nb col 1

14 nb row 3

14 nb col 2

14 nb filter 10

» 14 init uniform
g 15 activation tanh
g 16 nb row 1
16 nb col 1

17 p 0.99

19 output dim 100

110 activation relu

111 p 0.0

112 output dim 993

113 activation relu

114 p 0.457

115 output dim 1024

116 activation relu

117 p 0.0
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TRAINING PARAMETERS

Table A.6.: Parameters for the template method model.

Singleton Parameter Value
- feature selection false
g preprocess false
bootstrap k 10
optimizer adagrad
o nb epoch 10
é learning rate  9.14 - 1073
E batch size 382
pos cls weight 1.003
neg cls weight 0.639
11 nb row
11 nb col 4
11 nb filter 51
11 init uniform
12 activation tanh
13 nb row 1
13 nb col 1
14 nb row 4
14 nb col 4
14 nb filter 4
» 14 init uniform
g 15 activation tanh
g 16 nb row 1
16 nb col 1
I7p 0.59
19 output dim 931
110 activation relu
111 p 0.371
112 output dim 1022
113 activation relu
114 p 0.103
115 output dim 321
116 activation relu
117 p 0.993
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